Home
Class 12
MATHS
If int (x+1)/(sqrt(2x-1))dx = f(x)sqrt(2...

If `int (x+1)/(sqrt(2x-1))dx = f(x)sqrt(2x-1)+C`, where C is a constant of integration, then f(x) is equal to

A

`1/3(x+4)`

B

`1/3(x+1)`

C

`2/3(x+2)`

D

`2/3(x-4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{x+1}{\sqrt{2x-1}} \, dx\) and express it in the form \(f(x) \sqrt{2x-1} + C\), we will follow these steps: ### Step 1: Substitution Let \(t = \sqrt{2x - 1}\). Then, squaring both sides gives: \[ t^2 = 2x - 1 \implies 2x = t^2 + 1 \implies x = \frac{t^2 + 1}{2} \] Now, we differentiate \(t\) with respect to \(x\): \[ \frac{dt}{dx} = \frac{1}{\sqrt{2x - 1}} \cdot 2 \implies dx = \frac{t}{\sqrt{2}} dt \] ### Step 2: Rewrite the Integral Now we can rewrite the integral in terms of \(t\): \[ \int \frac{x+1}{\sqrt{2x-1}} \, dx = \int \frac{\left(\frac{t^2 + 1}{2} + 1\right)}{t} \cdot \frac{t}{\sqrt{2}} dt \] This simplifies to: \[ \int \frac{\left(\frac{t^2 + 3}{2}\right)}{\sqrt{2}} dt = \frac{1}{2\sqrt{2}} \int (t^2 + 3) dt \] ### Step 3: Integrate Now we perform the integration: \[ \frac{1}{2\sqrt{2}} \left( \frac{t^3}{3} + 3t \right) + C = \frac{1}{6\sqrt{2}} t^3 + \frac{3}{2\sqrt{2}} t + C \] ### Step 4: Substitute Back Now substitute back \(t = \sqrt{2x - 1}\): \[ = \frac{1}{6\sqrt{2}} (2x - 1)^{\frac{3}{2}} + \frac{3}{2\sqrt{2}} \sqrt{2x - 1} + C \] ### Step 5: Factor Out \(\sqrt{2x - 1}\) We can express this in the required form: \[ = \sqrt{2x - 1} \left( \frac{1}{6\sqrt{2}} (2x - 1) + \frac{3}{2\sqrt{2}} \right) + C \] Now, simplifying the expression inside the parentheses: \[ = \sqrt{2x - 1} \left( \frac{2x - 1 + 9}{6\sqrt{2}} \right) = \sqrt{2x - 1} \left( \frac{2x + 8}{6\sqrt{2}} \right) \] ### Step 6: Identify \(f(x)\) From the expression above, we can identify: \[ f(x) = \frac{2x + 8}{6\sqrt{2}} = \frac{x + 4}{3} \] Thus, the final answer is: \[ \boxed{\frac{x + 4}{3}} \]
Promotional Banner

Topper's Solved these Questions

  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 8|11 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 9|6 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 6|6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

If int x^(5)e^(-x^(2))dx = g(x)e^(-x^(2))+C , where C is a constant of integration, then g(-1) is equal to

int ((x ^(2) -x+1)/(x ^(2) +1)) e ^(cot^(-1) (x))dx =f (x) .e ^(cot ^(-1)(x)) +C where C is constant of integration. Then f (x) is equal to:

If intf(x)dx=3[f(x)]^(2)+c (where c is the constant of integration) and f(1)=(1)/(6) , then f(6pi) is equal to

If intsqrt(1-cosx)f(x)dx=2/3(1-cosx)^(3//2)+c where c is constant of integration then f(x) equals:

"If"int(dx)/(x^(3)(1+x^(6))^(2/3))=xf(x)(1+x^(6))^(1/3)+C where, C is a constant of integration, then the function f(x) is equal to

If the integral I=int(x^(5))/(sqrt(1+x^(3)))dx =Ksqrt(x^(3)+1)(x^(3)-2)+C , (where, C is the constant of integration), then the value of 9K is equal to

The value of int(x dx)/((x+3)sqrt(x+1) is (where , c is the constant of integration )

If the value of integral int(x+sqrt(x^2 -1))^(2)dx = ax^3 - x + b(x^2 - 1)^(1/b), +C (where, C is the constant of integration), then a xx b is equal to

If B=int(1)/(e^(x)+1)dx=-f(x)+C , where C is the constant of integration and e^(f(0))=2 , then the value of e^(f(-1)) is

If int(dx)/(sqrt(e^(x)-1))=2tan^(-1)(f(x))+C , (where x gt0 and C is the constant of integration ) then the range of f(x) is