Home
Class 12
MATHS
An ellipse and a hyperbola are confocal ...

An ellipse and a hyperbola are confocal (have the same focus) and the conjugate axis of the hyperbola is equal to the minor axis of the ellipse. If `e_1a n de_2` are the eccentricities of the ellipse and the hyperbola, respectively, then prove that `1/(e1 2)+1/(e2 2)=2` .

Text Solution

AI Generated Solution

To solve the problem, we will follow these steps: ### Step 1: Define the parameters of the ellipse and hyperbola Let: - The semi-major axis of the ellipse be \( a_1 \) - The semi-minor axis of the ellipse be \( b_1 \) - The eccentricity of the ellipse be \( e_1 \) - The semi-major axis of the hyperbola be \( a_2 \) ...
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.3|10 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.4|5 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.1|3 Videos
  • HIGHT AND DISTANCE

    CENGAGE ENGLISH|Exercise Archives|3 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|2 Videos

Similar Questions

Explore conceptually related problems

If ea n de ' the eccentricities of a hyperbola and its conjugate, prove that 1/(e^2)+1/(e '^2)=1.

If e and e' are the eccentricities of the ellipse 5x^(2) + 9 y^(2) = 45 and the hyperbola 5x^(2) - 4y^(2) = 45 respectively , then ee' is equal to

The ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 and the hyperbola (x^(2))/(A^(2))-(y^(2))/(B^(2))=1 are given to be confocal and length of mirror axis of the ellipse is same as the conjugate axis of the hyperbola. If e_1 and e_2 represents the eccentricities of ellipse and hyperbola respectively, then the value of e_(1)^(-2)+e_(1)^(-2) is

Suppose an ellipse and a hyperbola have the same pair of foci on the x -axis with centres at the origin and they intersect at (2,2) . If the eccentricity of the ellipse is (1)/(2) , then the eccentricity of the hyperbola, is

Consider an ellipse x^2/a^2+y^2/b^2=1 Let a hyperbola is having its vertices at the extremities of minor axis of an ellipse and length of major axis of an ellipse is equal to the distance between the foci of hyperbola. Let e_1 and e_2 be the eccentricities of an ellipse and hyperbola respectively. Again let A be the area of the quadrilateral formed by joining all the foci and A, be the area of the quadrilateral formed by all the directrices. The relation between e_1 and e_2 is given by

If radii of director circles of x^2/a^2+y^2/b^2=1 and x^2/a^2-y^2/b^2=1 are 2r and r respectively, let e_E and e_H are the eccentricities of ellipse and hyperbola respectively, then

Let the major axis of a standard ellipse equals the transverse axis of a standard hyperbola and their director circles have radius equal to 2R and R respectively. If e_(1) and e_(2) , are the eccentricities of the ellipse and hyperbola then the correct relation is

Statement-I (5)/(3) and (5)/(4) are the eccentricities of two conjugate hyperbolas. Statement-II If e_1 and e_2 are the eccentricities of two conjugate hyperbolas, then e_1e_2gt1 .

Let e_1 and e_2 be the eccentricities of a hyperbola and its conjugate hyperbola respectively. Statement 1 : e_1 e_2 gt sqrt(2) . Statement 2 : 1/e_1^2+ 1/e_2^2 = ?

If e_1a n d\ e_2 are respectively the eccentricities of the ellipse (x^2)/(18)+(y^2)/4=1 and the hyperbola (x^2)/9-(y^2)/4=1, then write the value of 2e_1^ 2+e_2^ 2dot