Home
Class 12
MATHS
P N is the ordinate of any point P on th...

`P N` is the ordinate of any point `P` on the hyperbola `(x^2)/(a^2)-(y^2)/(b^2)=1` and `AA '` is its transvers axis. If `Q` divides `A P` in the ratio `a^2: b^2,` then prove that `N Q` is perpendicular to `A^(prime)Pdot`

Text Solution

AI Generated Solution

To solve the problem, we need to prove that the line segment \( NQ \) is perpendicular to the line segment \( A'P \) given the conditions stated in the problem. Let's break down the solution step by step. ### Step 1: Understand the Hyperbola and Points The equation of the hyperbola is given by: \[ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \] Let \( P \) be a point on the hyperbola with coordinates \( P(a \sec \theta, b \tan \theta) \). The points \( A \) and \( A' \) are given as \( A(a, 0) \) and \( A'(-a, 0) \), respectively. The point \( N \) is defined as \( N(x, 0) \) where \( x \) is the x-coordinate of point \( P \). ...
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.3|10 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.4|5 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.1|3 Videos
  • HIGHT AND DISTANCE

    CENGAGE ENGLISH|Exercise Archives|3 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|2 Videos

Similar Questions

Explore conceptually related problems

Tangents at any point P is drawn to hyperbola (x^(2))/(a^(2)) - (y^(2))/(b^(2)) =1 intersects asymptotes at Q and R, if O is the centre of hyperbola then

If C is the centre of a hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 , S, S its foci and P a point on it. Prove tha SP. S'P =CP^2-a^2+b^2

If the normal at P(theta) on the hyperbola (x^2)/(a^2)-(y^2)/(2a^2)=1 meets the transvers axis at G , then prove that A GdotA^(prime)G=a^2(e^4sec^2theta-1) , where Aa n dA ' are the vertices of the hyperbola.

The tangent at P on the hyperbola (x^(2))/(a^(2)) -(y^(2))/(b^(2))=1 meets one of the asymptote in Q. Then the locus of the mid-point of PQ is

P is a point on the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1,N is the foot of the perpendicular from P on the transverse axis. The tangent to the hyperbola at P meets the transvers axis at Tdot If O is the center of the hyperbola, then find the value of O T×O Ndot

If P Q is a double ordinate of the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 such that O P Q is an equilateral triangle, O being the center of the hyperbola, then find the range of the eccentricity e of the hyperbola.

If P Q is a double ordinate of the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 such that O P Q is an equilateral triangle, O being the center of the hyperbola, then find the range of the eccentricity e of the hyperbola.

P is a point on the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 , and N is the foot of the perpendicular from P on the transverse axis. The tantent to the hyperbola at P meets the transverse axis at T. If O is the centre of the hyperbola, then OT.ON is equal to

P is a point on the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 , and N is the foot of the perpendicular from P on the transverse axis. The tantent to the hyperbola at P meets the transverse axis at T. If O is the centre of the hyperbola, then OT.ON is equal to

A transvers axis cuts the same branch of a hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 at Pa n dP ' and the asymptotes at Q and Q ' . Prove that P Q=P ' Q ' and P Q^(prime)=P^(prime)Qdot