Home
Class 12
MATHS
find the maximum value of f(x) = (sin^(-...

find the maximum value of `f(x) = (sin^(-1) (sin x))^(2) - sin^(-1) (sin x)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of the function \( f(x) = (\sin^{-1}(\sin x))^2 - \sin^{-1}(\sin x) \), we will follow these steps: ### Step 1: Rewrite the Function We start by rewriting the function: \[ f(x) = (\sin^{-1}(\sin x))^2 - \sin^{-1}(\sin x) \] Let \( y = \sin^{-1}(\sin x) \). Then, we can express \( f(x) \) in terms of \( y \): \[ f(x) = y^2 - y \] ### Step 2: Complete the Square Next, we complete the square for the quadratic expression: \[ f(x) = y^2 - y = \left(y - \frac{1}{2}\right)^2 - \frac{1}{4} \] This shows that the function \( f(x) \) can be expressed as a perfect square minus a constant. ### Step 3: Identify the Maximum Value The term \( \left(y - \frac{1}{2}\right)^2 \) achieves its minimum value of \( 0 \) when \( y = \frac{1}{2} \). Therefore, the maximum value of \( f(x) \) occurs at: \[ f(x)_{\text{max}} = 0 - \frac{1}{4} = -\frac{1}{4} \] ### Step 4: Determine the Corresponding \( x \) Value Now, we need to find the value of \( x \) for which \( \sin^{-1}(\sin x) = \frac{1}{2} \). This occurs when: \[ \sin x = \frac{1}{2} \] The solutions for this equation are: \[ x = \frac{\pi}{6} + 2k\pi \quad \text{or} \quad x = \frac{5\pi}{6} + 2k\pi \quad \text{for any integer } k \] ### Conclusion Thus, the maximum value of the function \( f(x) \) is: \[ \boxed{-\frac{1}{4}} \]

To find the maximum value of the function \( f(x) = (\sin^{-1}(\sin x))^2 - \sin^{-1}(\sin x) \), we will follow these steps: ### Step 1: Rewrite the Function We start by rewriting the function: \[ f(x) = (\sin^{-1}(\sin x))^2 - \sin^{-1}(\sin x) \] Let \( y = \sin^{-1}(\sin x) \). Then, we can express \( f(x) \) in terms of \( y \): ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.3|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.4|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.1|12 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

Maximum value of function f(x)=(sin^(-1)(sinx)^(2)-sin^(-1)(sinx) is:

Maximum value of function f(x)=(sin^(-1)(sinx)^(2)-sin^(-1)(sinx) is:

The maximum value of (sin x)^((sin x)) is

Find the value of x for which f(x) = 2 sin^(-1) sqrt(1 - x) + sin^(-1) (2 sqrt(x - x^(2))) is constant

The local maximum value of f(x)=(sin^(2)x)/(sin^(2)x-sin^(2)a) (0 lt a lt pi//2) is :

If sin^(-1)x_i in [0,1]AAi=1,2,3, .28 then find the maximum value of sqrt(sin^(-1)x_1)sqrt(cos^(-1)x_2)+sqrt(sin^(-1)x_2)sqrt(cos^(-1)x_3)+ sqrt(sin^(-1)x_3)sqrt(cos^(-1)x_4)++sqrt(sin^(-1)x_(28))sqrt(cos^(-1)x_1)

If sin^(-1)x_i in [0,1]AAi=1,2,3, .28 then find the maximum value of sqrt(sin^(-1)x_1)sqrt(cos^(-1)x_2)+sqrt(sin^(-1)x_2)sqrt(cos^(-1)x_3)+ sqrt(sin^(-1)x_3)sqrt(cos^(-1)x_4)++sqrt(sin^(-1)x_(28))sqrt(cos^(-1)x_1)

Find the domain of f(x)=sin^(-1)(-x^2)dot

Find the maximum value of the function f(x) =sin x + cos x .

Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))