Home
Class 12
MATHS
solve sin^(-1) (sin 5) gt x^(2) - 4x...

solve `sin^(-1) (sin 5) gt x^(2) - 4x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( \sin^{-1}(\sin 5) > x^2 - 4x \), we will follow these steps: ### Step 1: Simplifying \( \sin^{-1}(\sin 5) \) The function \( \sin^{-1}(x) \) returns values in the range \( \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \). Since \( 5 \) is outside this range, we need to find an equivalent angle within this range. Using the property of the sine function, we know: \[ \sin y = \sin x \implies y = n\pi + (-1)^n x \] for some integer \( n \). Since \( 5 \) is in the first quadrant, we can express it as: \[ \sin^{-1}(\sin 5) = 5 - 2n\pi \] where \( n \) is chosen such that \( 5 - 2n\pi \) lies within \( \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \). ### Step 2: Finding the appropriate \( n \) To find \( n \), we need to check values of \( n \): - For \( n = 0 \): \[ 5 - 2(0)\pi = 5 \quad (\text{not in range}) \] - For \( n = 1 \): \[ 5 - 2(1)\pi = 5 - 2\pi \approx 5 - 6.28 = -1.28 \quad (\text{in range}) \] - For \( n = 2 \): \[ 5 - 2(2)\pi = 5 - 4\pi \quad (\text{not in range}) \] Thus, the valid expression is: \[ \sin^{-1}(\sin 5) = 5 - 2\pi \] ### Step 3: Setting up the inequality Now we substitute back into the inequality: \[ 5 - 2\pi > x^2 - 4x \] Rearranging gives: \[ x^2 - 4x + (2\pi - 5) < 0 \] ### Step 4: Solving the quadratic inequality Let \( f(x) = x^2 - 4x + (2\pi - 5) \). We need to find the roots of the equation: \[ x^2 - 4x + (2\pi - 5) = 0 \] Using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 1, b = -4, c = 2\pi - 5 \): \[ x = \frac{4 \pm \sqrt{(-4)^2 - 4 \cdot 1 \cdot (2\pi - 5)}}{2 \cdot 1} \] \[ x = \frac{4 \pm \sqrt{16 - 8\pi + 20}}{2} \] \[ x = \frac{4 \pm \sqrt{36 - 8\pi}}{2} \] \[ x = 2 \pm \sqrt{9 - 2\pi} \] ### Step 5: Finding the interval The roots are: \[ x_1 = 2 - \sqrt{9 - 2\pi}, \quad x_2 = 2 + \sqrt{9 - 2\pi} \] The quadratic opens upwards (since the coefficient of \( x^2 \) is positive), thus \( f(x) < 0 \) between the roots: \[ x \in (2 - \sqrt{9 - 2\pi}, 2 + \sqrt{9 - 2\pi}) \] ### Final Answer The solution to the inequality \( \sin^{-1}(\sin 5) > x^2 - 4x \) is: \[ x \in (2 - \sqrt{9 - 2\pi}, 2 + \sqrt{9 - 2\pi}) \]

To solve the inequality \( \sin^{-1}(\sin 5) > x^2 - 4x \), we will follow these steps: ### Step 1: Simplifying \( \sin^{-1}(\sin 5) \) The function \( \sin^{-1}(x) \) returns values in the range \( \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \). Since \( 5 \) is outside this range, we need to find an equivalent angle within this range. Using the property of the sine function, we know: \[ ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.3|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.4|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.1|12 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

The complete set of values of x satisfying the inequality sin^(-1)(sin 5) gt x^(2)-4x is (2-sqrt(lambda-2pi), 2+sqrt(lambda-2pi)) , then lambda=

Solve sin^(-1)x > -1

Solve sin^(-1) x gt tan^(-1) x

Solve sin^(-1) [sin((2x^(2) + 4)/(1 + x^(2)))] lt pi -3

Solve sin^(-1) (sin 6x) = x, x in [0,pi]

sin^-1(sin 5)> x^2-4 x holds if

solve sin(2x)+sin(x)=0?

Solve cos^(-1) (cos x) gt sin^(-1) (sin x), x in [0, 2pi]

Solve : sin^(-1)( x) + sin^(-1)( 2x) = sin^(-1)(sqrt(3)/2) .

Solve 2sin^(-1)x + sin^(-1) (1-x)= (pi)/(2)