Home
Class 12
MATHS
If tan(cos^(-1) x) = sin (cot^(-1).(1)/(...

If `tan(cos^(-1) x) = sin (cot^(-1).(1)/(2))`, then find the value of x

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan(\cos^{-1} x) = \sin(\cot^{-1} \frac{1}{2}) \), we will follow these steps: ### Step 1: Rewrite the left side Let \( \theta = \cos^{-1} x \). Then, we have: \[ x = \cos \theta \] Thus, the left side becomes: \[ \tan(\cos^{-1} x) = \tan(\theta) \] ### Step 2: Express \( \tan(\theta) \) Using the right triangle definition, where the adjacent side is \( x \) (base) and the hypotenuse is \( 1 \), we can find the opposite side (perpendicular): \[ \text{Perpendicular} = \sqrt{1^2 - x^2} = \sqrt{1 - x^2} \] Thus, \[ \tan(\theta) = \frac{\text{Perpendicular}}{\text{Base}} = \frac{\sqrt{1 - x^2}}{x} \] ### Step 3: Rewrite the right side Now, consider the right side \( \sin(\cot^{-1} \frac{1}{2}) \). Let \( \alpha = \cot^{-1} \frac{1}{2} \). Then, \[ \cot \alpha = \frac{1}{2} \] This means the adjacent side (base) is \( 1 \) and the opposite side (perpendicular) is \( 2 \). ### Step 4: Find the hypotenuse for \( \alpha \) Using the Pythagorean theorem: \[ \text{Hypotenuse} = \sqrt{(1)^2 + (2)^2} = \sqrt{1 + 4} = \sqrt{5} \] Thus, we can express \( \sin(\alpha) \): \[ \sin(\alpha) = \frac{\text{Perpendicular}}{\text{Hypotenuse}} = \frac{2}{\sqrt{5}} \] ### Step 5: Set the two sides equal Now, we equate the two sides: \[ \frac{\sqrt{1 - x^2}}{x} = \frac{2}{\sqrt{5}} \] ### Step 6: Cross-multiply Cross-multiplying gives: \[ \sqrt{5} \sqrt{1 - x^2} = 2x \] ### Step 7: Square both sides Squaring both sides results in: \[ 5(1 - x^2) = 4x^2 \] ### Step 8: Rearrange the equation Rearranging gives: \[ 5 - 5x^2 = 4x^2 \] \[ 5 = 9x^2 \] ### Step 9: Solve for \( x^2 \) Thus, we have: \[ x^2 = \frac{5}{9} \] ### Step 10: Find \( x \) Taking the square root gives: \[ x = \pm \frac{\sqrt{5}}{3} \] ### Step 11: Determine the valid solution Since \( \cos^{-1} x \) is defined for \( x \) in the range \([-1, 1]\), we discard \( x = -\frac{\sqrt{5}}{3} \) because it would yield a negative value for \( \tan(\theta) \). Therefore, the valid solution is: \[ x = \frac{\sqrt{5}}{3} \] ### Final Answer The value of \( x \) is: \[ \boxed{\frac{\sqrt{5}}{3}} \]

To solve the equation \( \tan(\cos^{-1} x) = \sin(\cot^{-1} \frac{1}{2}) \), we will follow these steps: ### Step 1: Rewrite the left side Let \( \theta = \cos^{-1} x \). Then, we have: \[ x = \cos \theta \] Thus, the left side becomes: ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.4|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.5|13 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.2|6 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

If cos (2 sin^(-1) x) = (1)/(9) , then find the value of x

If A=e^(cos(cos^(-1)(x^(2))+tan (cot^(-1)(x^(2)) then find the minimum value of A

If tan^(-1)x-cot^(-1)x=tan^(-1)""1/(sqrt(3)) find the value of xdot

If alpha le sin^(-1)x+cos^(-1)x +tan^(-1)xlebeta then find the value of alpha and beta

If cos(tan^(-1)x+cot^(-1)sqrt(3))=0 , find the value of xdot

If cos(tan^(-1)x+cot^(-1)sqrt(3))=0 , find the value of xdot

If alpha = sin^(-1) (cos(sin^-1) x)) and beta = cos^(-1) (sin (cos^(-1) x)) , then find tan alpha. tan beta.

"If"sin{cot^(-1)(x+1)}=cos(tan^(-1)x), then find x.

If sin^(-1)x in (0, (pi)/(2)) , then the value of tan((cos^(-1)(sin(cos^(-1)x))+sin^(-1)(cos(sin^(-1)x)))/(2)) is :

It is given that A=(tan^(-1)x)^(3)+(cot^(-1)x)^(3) where x gt 0 and B=(cos^(-1)t)^(2)+(sin^(-1)t)^(2) where t in [0, (1)/(sqrt(2))] , and sin^(-1)x+cos^(-1)x=(pi)/(2) for -1 le x le 1 and tan^(-1)x +cot^(-1)x=(pi)/(2) for x in R . The maximum value of B is :