Home
Class 12
MATHS
Prove that sin cot^(-1) tan cos^(-1) x =...

Prove that `sin cot^(-1) tan cos^(-1) x = sin cosec^(-1) cot tan^(-1) x = x, " where " x in [0,1]`

Text Solution

AI Generated Solution

To prove that \( \sin(\cot^{-1}(\tan(\cos^{-1}(x)))) = \sin(\csc^{-1}(\cot(\tan^{-1}(x)))) = x \) for \( x \in [0, 1] \), we will break down the problem into two parts. ### Part 1: Proving \( \sin(\cot^{-1}(\tan(\cos^{-1}(x)))) = x \) 1. **Start with the inner function**: \[ \cos^{-1}(x) \] ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.4|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.5|13 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.2|6 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

Prove that : sin cot^(-1) tan cos^(-1) x=x

Prove that sin (cot^(-1) (tan (cos^(-1) x))) = x, x gt 0

Prove that : 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1) x

Prove that tan(cot^(-1)x)=cot(tan^(-1)x)

Prove that tan(cot^(-1)x)=cot(tan^(-1)x)

Prove that : tan^(-1) x + cot^(-1) (1+x) = tan^(-1) (1+x+x^2)

Prove that tan^(-1) x + cot^(-1) (x+1) = tan ^(-1) (x^(2) + x+1) .

Prove that : tan^(-1) x+cot^(-1) y = tan^(-1) ((xy+1)/(y-x))

The value of sin[cot^(-1){cos(tan^(-1) x)}] is

int\ (tan^(-1)x - cot^(-1)x)/(tan^(-1)x + cot^(-1)x) \ dx equals