Home
Class 12
MATHS
tan^(- 1)((sqrt(1+a^2x^2)-1)/(a x)) wher...

`tan^(- 1)((sqrt(1+a^2x^2)-1)/(a x))` where `x!=0,` is equal to

Text Solution

AI Generated Solution

To solve the expression \( \tan^{-1} \left( \frac{\sqrt{1 + a^2 x^2} - 1}{a x} \right) \), we can follow these steps: ### Step 1: Substitute \( a x = \tan(\theta) \) Let \( a x = \tan(\theta) \). Then, we have: \[ x = \frac{\tan(\theta)}{a} \] ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.4|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.5|13 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.2|6 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

tan^(- 1)(1/(sqrt(x^2-1))),|x|gt1

Differentiate the functions with respect to x : tan^(-1){(sqrt(1+a^2x^2)-1)/(a x)},x!=0

If y=(tan^- 1)(sqrt(1+x^2)-1)/x, then y'(1) is equal to

Find the derivative of tan^(-1) "" (sqrt(1 + x^(2)) - 1)/( x) with respect to tan^(-1) ( 2 x sqrt( 1 - x^(2)))/(1 - 2 x ^(2)) at x = 0

2"tan"(tan^(-1)(x)+tan^(-1)(x^3)),w h e r ex in R-{-1,1}, is equal to (2x)/(1-x^2) t(2tan^(-1)x) tan(cot^(-1)(-x)-cot^(-1)(x)) "tan"(2cot^(-1)x)

"Find" (dy)/(dx)"if" y=tan^(-1)((sqrt(1+x^2)-1)/x), where x!=0

If f:R rarrA defined as f(x)=tan^(-1)(sqrt(4(x^(2)+x+1))) is surjective, then A is equal to

Differentiate tan^(-1)((sqrt(1+x^2)-1)/x) with respect to tan^(-1)x ,x!=0.

Differentiate tan^(-1)((sqrt(1+x^2)-1)/x) with respect to tan^(-1)x ,x!=0.

"F i n d"(dy)/(dx)"if"y=tan^(-1)((sqrt(1+x^2)-1)/x), where x!=0