Home
Class 12
MATHS
Find the value of tan^(-1) (-tan.(13pi)/...

Find the value of `tan^(-1) (-tan.(13pi)/(8)) + cot^(-1) (-cot((9pi)/(8)))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \tan^{-1}(-\tan(13\pi/8)) + \cot^{-1}(-\cot(9\pi/8)) \), we can follow these steps: ### Step 1: Rewrite the Inverse Functions Using the identities: - \( \tan^{-1}(-x) = -\tan^{-1}(x) \) - \( \cot^{-1}(-x) = \pi - \cot^{-1}(x) \) We can rewrite the expression as: \[ \tan^{-1}(-\tan(13\pi/8)) + \cot^{-1}(-\cot(9\pi/8)) = -\tan^{-1}(\tan(13\pi/8)) + \left(\pi - \cot^{-1}(\cot(9\pi/8))\right) \] ### Step 2: Simplify \( \tan^{-1}(\tan(13\pi/8)) \) The angle \( 13\pi/8 \) is outside the principal range of \( \tan^{-1} \) which is \( (-\pi/2, \pi/2) \). To find an equivalent angle within this range, we can express \( 13\pi/8 \) in terms of a coterminal angle: \[ 13\pi/8 = 2\pi - 3\pi/8 \] Using the property \( \tan(2\pi - x) = -\tan(x) \), we have: \[ \tan(13\pi/8) = -\tan(3\pi/8) \] Thus, \[ \tan^{-1}(\tan(13\pi/8)) = \tan^{-1}(-\tan(3\pi/8)) = -\tan^{-1}(\tan(3\pi/8)) = -\frac{3\pi}{8} \] ### Step 3: Simplify \( \cot^{-1}(\cot(9\pi/8)) \) Similarly, \( 9\pi/8 \) is also outside the principal range of \( \cot^{-1} \) which is \( (0, \pi) \). We can express \( 9\pi/8 \) as: \[ 9\pi/8 = \pi + \pi/8 \] Using the property \( \cot(\pi + x) = \cot(x) \), we have: \[ \cot(9\pi/8) = \cot(\pi/8) \] Thus, \[ \cot^{-1}(\cot(9\pi/8)) = \cot^{-1}(\cot(\pi/8)) = \frac{\pi}{8} \] ### Step 4: Substitute Back into the Expression Now substituting back into our expression: \[ -\tan^{-1}(\tan(13\pi/8)) + \left(\pi - \cot^{-1}(\cot(9\pi/8))\right) = -\left(-\frac{3\pi}{8}\right) + \left(\pi - \frac{\pi}{8}\right) \] This simplifies to: \[ \frac{3\pi}{8} + \left(\pi - \frac{\pi}{8}\right) = \frac{3\pi}{8} + \frac{8\pi}{8} - \frac{\pi}{8} = \frac{3\pi}{8} + \frac{7\pi}{8} = \frac{10\pi}{8} = \frac{5\pi}{4} \] ### Step 5: Final Expression Thus, the value of the given expression is: \[ \boxed{\pi} \]

To solve the expression \( \tan^{-1}(-\tan(13\pi/8)) + \cot^{-1}(-\cot(9\pi/8)) \), we can follow these steps: ### Step 1: Rewrite the Inverse Functions Using the identities: - \( \tan^{-1}(-x) = -\tan^{-1}(x) \) - \( \cot^{-1}(-x) = \pi - \cot^{-1}(x) \) We can rewrite the expression as: ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.4|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.5|13 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.2|6 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

Find the value of : tan^(-1){tan(-(7pi)/8)}

Find the value of tan pi/8 .

The value of : tan^(-1) ( tan ""(9pi)/(8) ) is

find the value of tan^(-1){cot(-1/4)}

Find the value of tan (13pi)/(12) .

Find the value of : cot^-1 (cot((5pi)/4))

Find the value of tan { cot ^(-1) ((-2)/3)}

Find the value of : cot^(-1)cot((5pi)/4)

Find the value of cot(tan^(-1)a+cot^(-1)a)

Find the value of: cot(tan^(-1)a+cot^(-1)a)