Home
Class 12
MATHS
The value of tan{(cos^(- 1)(-2/7)-pi/2)]...

The value of `tan{(cos^(- 1)(-2/7)-pi/2)]` is

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \tan\left(\cos^{-1}\left(-\frac{2}{7}\right) - \frac{\pi}{2}\right) \), we can follow these steps: ### Step 1: Rewrite the expression using properties of inverse trigonometric functions We know that: \[ \cos^{-1}(-x) = \pi - \cos^{-1}(x) \] Thus, we can rewrite: \[ \cos^{-1}\left(-\frac{2}{7}\right) = \pi - \cos^{-1}\left(\frac{2}{7}\right) \] So, we have: \[ \tan\left(\cos^{-1}\left(-\frac{2}{7}\right) - \frac{\pi}{2}\right) = \tan\left(\left(\pi - \cos^{-1}\left(\frac{2}{7}\right)\right) - \frac{\pi}{2}\right) \] ### Step 2: Simplify the expression Using the identity \( \tan(\pi - x) = -\tan(x) \), we can simplify: \[ \tan\left(\pi - \cos^{-1}\left(\frac{2}{7}\right) - \frac{\pi}{2}\right) = \tan\left(-\cos^{-1}\left(\frac{2}{7}\right)\right) = -\tan\left(\cos^{-1}\left(\frac{2}{7}\right)\right) \] ### Step 3: Find \( \tan(\cos^{-1}(x)) \) We know that: \[ \tan(\cos^{-1}(x)) = \frac{\sqrt{1-x^2}}{x} \] For \( x = \frac{2}{7} \): \[ \tan\left(\cos^{-1}\left(\frac{2}{7}\right)\right) = \frac{\sqrt{1 - \left(\frac{2}{7}\right)^2}}{\frac{2}{7}} \] ### Step 4: Calculate \( 1 - \left(\frac{2}{7}\right)^2 \) Calculating: \[ 1 - \left(\frac{2}{7}\right)^2 = 1 - \frac{4}{49} = \frac{49 - 4}{49} = \frac{45}{49} \] Thus: \[ \sqrt{1 - \left(\frac{2}{7}\right)^2} = \sqrt{\frac{45}{49}} = \frac{\sqrt{45}}{7} = \frac{3\sqrt{5}}{7} \] ### Step 5: Substitute back into the tangent formula Now substituting back: \[ \tan\left(\cos^{-1}\left(\frac{2}{7}\right)\right) = \frac{\frac{3\sqrt{5}}{7}}{\frac{2}{7}} = \frac{3\sqrt{5}}{2} \] ### Step 6: Final expression for \( \tan\left(\cos^{-1}\left(-\frac{2}{7}\right) - \frac{\pi}{2}\right) \) Thus: \[ \tan\left(\cos^{-1}\left(-\frac{2}{7}\right) - \frac{\pi}{2}\right) = -\tan\left(\cos^{-1}\left(\frac{2}{7}\right)\right) = -\frac{3\sqrt{5}}{2} \] ### Final Answer The value of \( \tan\left(\cos^{-1}\left(-\frac{2}{7}\right) - \frac{\pi}{2}\right) \) is: \[ -\frac{3\sqrt{5}}{2} \]

To find the value of \( \tan\left(\cos^{-1}\left(-\frac{2}{7}\right) - \frac{\pi}{2}\right) \), we can follow these steps: ### Step 1: Rewrite the expression using properties of inverse trigonometric functions We know that: \[ \cos^{-1}(-x) = \pi - \cos^{-1}(x) \] Thus, we can rewrite: ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.4|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.5|13 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.2|6 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

The value of tan[cos^(-1)(4/5)+tan^(-1)(2/3)] is 6/(17) (b) 7/(16) (c) (16)/7 (d) none of these

The value of tan^(-1)(1)+cos^(-1)(-1/2)+sin^(-1)(-1/2) is equal to pi/4 b. (5pi)/(12) c. (3pi)/4 d. (13pi)/(12)

The value of cos^(-1)(cos'(3pi)/(2)) is

The value of cos(tan^-1 (tan 2)) is

Find the value of : tan^(-1){tan(-(7pi)/8)}

Find the value of tan^(-1)(tan'(2pi)/(3)) .

Find the value of 2cos^3(pi/7)-cos^2(pi/7)-cos(pi/7)

The value of cos[1/2cos^(-1)(cos(-(14pi)/5))]\ is/are a. cos(-(7pi)/5) b. sin(pi/(10)) c. cos((2pi)/5)\ d. -cos((3pi)/5)

The value of cos((2pi)/7)cos((4pi)/7)cos((6pi)/7) is a. -1//2 b. \ 1//2 c. \ 1//4 d. 1//8

Find the principal value of tan^(-1){cos((3pi)/2)}