Home
Class 12
MATHS
If tan^-1(1/y)=-pi+cot^-1 y, where y=x^2...

If `tan^-1(1/y)=-pi+cot^-1 y,` where `y=x^2-3x+2,` then find the value of `x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan^{-1}\left(\frac{1}{y}\right) = -\pi + \cot^{-1}(y) \), where \( y = x^2 - 3x + 2 \), we will follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ \tan^{-1}\left(\frac{1}{y}\right) = -\pi + \cot^{-1}(y) \] ### Step 2: Use the identity for cotangent Recall that \( \cot^{-1}(y) = \frac{\pi}{2} - \tan^{-1}(y) \). Thus, we can rewrite the right-hand side: \[ -\pi + \cot^{-1}(y) = -\pi + \left(\frac{\pi}{2} - \tan^{-1}(y)\right) = -\frac{3\pi}{2} - \tan^{-1}(y) \] ### Step 3: Set the equations equal Now we have: \[ \tan^{-1}\left(\frac{1}{y}\right) = -\frac{3\pi}{2} - \tan^{-1}(y) \] ### Step 4: Rearranging the equation Rearranging gives us: \[ \tan^{-1}\left(\frac{1}{y}\right) + \tan^{-1}(y) = -\frac{3\pi}{2} \] ### Step 5: Analyze the conditions For the equation \( \tan^{-1}\left(\frac{1}{y}\right) \) to be defined and equal to a negative angle, \( y \) must be negative. Thus, we must have: \[ y < 0 \] ### Step 6: Substitute for \( y \) Substituting \( y = x^2 - 3x + 2 \): \[ x^2 - 3x + 2 < 0 \] ### Step 7: Factor the quadratic Factoring the quadratic gives: \[ (x - 1)(x - 2) < 0 \] ### Step 8: Determine the intervals The roots of the equation are \( x = 1 \) and \( x = 2 \). The quadratic will be negative between the roots: \[ 1 < x < 2 \] ### Step 9: Conclusion Thus, the solution for \( x \) is: \[ x \in (1, 2) \]

To solve the equation \( \tan^{-1}\left(\frac{1}{y}\right) = -\pi + \cot^{-1}(y) \), where \( y = x^2 - 3x + 2 \), we will follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ \tan^{-1}\left(\frac{1}{y}\right) = -\pi + \cot^{-1}(y) \] ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.4|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.5|13 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.2|6 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

If sin^-1 x+sin^-1 y+sin^-1 z=(3pi)/2 , then find the value of x^2+y^2+z^2

If sin^-1 x+sin^-1 y+sin^-1 z=(3pi)/2 , then find the value of x^2+y^2+z^2

If sin^(-1)x+sin^(-1)y=pi/3 and cos^(-1)x-cos^(-1)y=pi/6 , find the values of x and y .

If sin^-1x+sin^-1y+sin^-1z=(3pi)/2 , then find the value of x^2+y^2+z^2

If x = 2, y = 3 and z = -1, find the values of : x-:y

If (x + 1, y - 2) = (3, -1) , find the values of x and y.

If (x+1,\ 1)=(3,\ y-2) , find the value of x and y .

If 3x-7y=10\ and x y=-1, find the value of 9x^2+49 y^2

If x ,y in R and x^2+y^2+x y=1, then find the minimum value of x^3y+x y^3+4.

For x,y,z,t in R , if sin^(-1)x+cos^(-1)y+sec^(-1)z ge t^(2)-sqrt(2pi)*t+3pi , then the value of tan^(-1)x+tan^(-1)y+tan^(-1)z+tan^(-1)( sqrt((2)/(pi))t) is __________.