Home
Class 12
MATHS
solve the following equation sec^(-1).(x...

solve the following equation `sec^(-1).(x)/(a) - sec^(-1).(x)/(b) = sec^(-1) b - sec^(-1) a, a ge 1, b ge 1, a!= b`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \sec^{-1}\left(\frac{x}{a}\right) - \sec^{-1}\left(\frac{x}{b}\right) = \sec^{-1}(b) - \sec^{-1}(a) \] where \( a \geq 1 \), \( b \geq 1 \), and \( a \neq b \), we will follow these steps: ### Step 1: Rewrite the equation using cosine We know that \(\sec^{-1}(y) = \cos^{-1}\left(\frac{1}{y}\right)\). Therefore, we can rewrite the equation as: \[ \cos^{-1}\left(\frac{a}{x}\right) - \cos^{-1}\left(\frac{b}{x}\right) = \cos^{-1}\left(\frac{1}{b}\right) - \cos^{-1}\left(\frac{1}{a}\right) \] ### Step 2: Use the cosine addition formula Using the formula for the difference of cosines, we can express the left-hand side as: \[ \cos^{-1}\left(\frac{a}{x}\right) + \cos^{-1}\left(\frac{1}{a}\right) = \cos^{-1}\left(\frac{b}{x}\right) + \cos^{-1}\left(\frac{1}{b}\right) \] ### Step 3: Set up the equation Now, we can equate the two sides: \[ \cos^{-1}\left(\frac{a}{x}\right) + \cos^{-1}\left(\frac{1}{a}\right) = \cos^{-1}\left(\frac{b}{x}\right) + \cos^{-1}\left(\frac{1}{b}\right) \] ### Step 4: Eliminate the cosines To eliminate the cosines, we can take the cosine of both sides. This leads us to: \[ \frac{a}{x} = \frac{b}{x} \] ### Step 5: Rearranging the equation Rearranging gives us: \[ \frac{a}{x} - \frac{b}{x} = 0 \] This simplifies to: \[ a - b = 0 \] ### Step 6: Solve for \(x\) Since \(a \neq b\) as per the problem statement, we can conclude that: \[ x^2 = ab \] Taking the square root gives: \[ x = ab \] ### Step 7: Consider the conditions Given that \(a \geq 1\) and \(b \geq 1\), \(x\) must be positive. Thus, we have: \[ x = ab \] ### Final Solution The solution to the equation is: \[ x = ab \]

To solve the equation \[ \sec^{-1}\left(\frac{x}{a}\right) - \sec^{-1}\left(\frac{x}{b}\right) = \sec^{-1}(b) - \sec^{-1}(a) \] where \( a \geq 1 \), \( b \geq 1 \), and \( a \neq b \), we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Single correct|80 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.5|13 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

int sec^(-1)x dx

Solve sec^(-1) x gt cosec^(-1) x

Find the domain of sec^(-1)(3x-1) (ii) sec^(-1)x-tan^(-1)x

Find the domain of sec^(-1)(3x-1) (ii) sec^(-1)x-tan^(-1)x

Solve the equation sec x = sec (x+pi)

Find the domain of (i) sec^(-1)(3x-1) (ii) sec^(-1)x-tan^(-1)x

Prove the following identities : (sec A)/ (sec A + 1) + (sec A)/ (sec A - 1) = 2 cosec^(2) A

Find the domain of sec^(-1)(2x+1)

Solve the equation sec^2 2x = 1 - tan 2x .

Solve the following equations: a) 3sinx+2cos^(2)x=0 , b) sec^(2)2alpha=1-tan2alpha