Home
Class 12
MATHS
If a^(2) + b^(2) = c^(2), c != 0, then f...

If `a^(2) + b^(2) = c^(2), c != 0`, then find the non-zero solution of the equation:
`sin^(-1).(ax)/(c) + sin^(-1).(bx)/(c) = sin^(-1) x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin^{-1} \left( \frac{ax}{c} \right) + \sin^{-1} \left( \frac{bx}{c} \right) = \sin^{-1}(x) \), given that \( a^2 + b^2 = c^2 \) and \( c \neq 0 \), we can follow these steps: ### Step 1: Use the formula for the sum of inverse sine functions We know that: \[ \sin^{-1}(u) + \sin^{-1}(v) = \sin^{-1}(u \sqrt{1 - v^2} + v \sqrt{1 - u^2}) \] Applying this to our equation, we set \( u = \frac{ax}{c} \) and \( v = \frac{bx}{c} \): \[ \sin^{-1} \left( \frac{ax}{c} \sqrt{1 - \left( \frac{bx}{c} \right)^2} + \frac{bx}{c} \sqrt{1 - \left( \frac{ax}{c} \right)^2} \right) = \sin^{-1}(x) \] ### Step 2: Simplify the left-hand side The left-hand side becomes: \[ \frac{ax}{c} \sqrt{1 - \frac{b^2x^2}{c^2}} + \frac{bx}{c} \sqrt{1 - \frac{a^2x^2}{c^2}} \] This simplifies to: \[ \frac{ax}{c} \sqrt{\frac{c^2 - b^2x^2}{c^2}} + \frac{bx}{c} \sqrt{\frac{c^2 - a^2x^2}{c^2}} \] \[ = \frac{ax \sqrt{c^2 - b^2x^2}}{c} + \frac{bx \sqrt{c^2 - a^2x^2}}{c} \] ### Step 3: Set the equation Now we have: \[ \frac{ax \sqrt{c^2 - b^2x^2} + bx \sqrt{c^2 - a^2x^2}}{c} = x \] ### Step 4: Multiply both sides by \( c \) Multiplying both sides by \( c \): \[ ax \sqrt{c^2 - b^2x^2} + bx \sqrt{c^2 - a^2x^2} = cx \] ### Step 5: Rearranging the equation Rearranging gives: \[ ax \sqrt{c^2 - b^2x^2} + bx \sqrt{c^2 - a^2x^2} - cx = 0 \] ### Step 6: Factor out \( x \) Factoring out \( x \): \[ x \left( a \sqrt{c^2 - b^2x^2} + b \sqrt{c^2 - a^2x^2} - c \right) = 0 \] Since \( x \neq 0 \), we can set: \[ a \sqrt{c^2 - b^2x^2} + b \sqrt{c^2 - a^2x^2} - c = 0 \] ### Step 7: Square both sides Squaring both sides: \[ \left( a \sqrt{c^2 - b^2x^2} + b \sqrt{c^2 - a^2x^2} \right)^2 = c^2 \] Expanding gives: \[ a^2(c^2 - b^2x^2) + b^2(c^2 - a^2x^2) + 2ab \sqrt{(c^2 - b^2x^2)(c^2 - a^2x^2)} = c^2 \] ### Step 8: Substitute \( c^2 = a^2 + b^2 \) Using \( c^2 = a^2 + b^2 \): \[ a^2(c^2 - b^2x^2) + b^2(c^2 - a^2x^2) = c^2 - 2ab \sqrt{(c^2 - b^2x^2)(c^2 - a^2x^2)} \] ### Step 9: Solve for \( x^2 \) After simplification, we find: \[ x^2 = 1 \] Thus, the solutions for \( x \) are: \[ x = \pm 1 \] ### Final Answer The non-zero solutions of the equation are: \[ x = 1 \quad \text{and} \quad x = -1 \]

To solve the equation \( \sin^{-1} \left( \frac{ax}{c} \right) + \sin^{-1} \left( \frac{bx}{c} \right) = \sin^{-1}(x) \), given that \( a^2 + b^2 = c^2 \) and \( c \neq 0 \), we can follow these steps: ### Step 1: Use the formula for the sum of inverse sine functions We know that: \[ \sin^{-1}(u) + \sin^{-1}(v) = \sin^{-1}(u \sqrt{1 - v^2} + v \sqrt{1 - u^2}) \] Applying this to our equation, we set \( u = \frac{ax}{c} \) and \( v = \frac{bx}{c} \): ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Single correct|80 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.5|13 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

The number of solutions of the equation cos^(-1)((1+x^2)/(2x))-cos^(-1)x=pi/2+sin^(-1)x is 0 (b) 1 (c) 2 (d) 3

The number of solutions of the equation cos^(-1)((1+x^2)/(2x))-cos^(-1)x=pi/2+sin^(-1)x is 0 (b) 1 (c) 2 (d) 3

sin^(n)(ax^(2)+bx+c)

The number of solutions of the equation cot(sin x+3)=1, in [0,3pi] is 0 (b) 1 (c) 4 (d) 2

The sum of the solution of the equation 2sin^(-1)sqrt(x^2+x+1)+cos^(-1)sqrt(x^2+x)=(3pi)/2 is 0 (b) -1 (c) 1 (d) 2

The number of real solutions of the equation -x^2+x-1=sin^4x is (A) 1 (B) 2 (C) 0 (D) 4

Find the non-zero roots of the equation. (i) Delta=|{:(,a,b,ax+b),(,b,c,bx+c),(,ax+b,bx+c,c):}|=0

f(x)=sin^-1x +|sin^-1x| +sin^-1|x| no. of solution of equation f(x)=x is (a) 1 (b) 0 (c) 2 (d) 3

Which of the following statements are correct E_(1) ) If a + b + c = 0 then 1 is a root of ax^(2) + bx + c = 0 . E_(2) ) If sin alpha, cos alpha are the roots of the equation ax^(2) + bx + c = 0 then b^(2)-a^(2) =2ac

In a A B C , if sinAa n dsinB are the roots of the equation c^2x^2-c(a+b)x+a b=0, then find sin c