Home
Class 12
MATHS
If x in [-1, 0) then find the value of c...

If `x in [-1, 0)` then find the value of `cos^(-1) (2x^(2) -1) -2 sin^(-1) x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \cos^{-1}(2x^2 - 1) - 2\sin^{-1}(x) \) given that \( x \in [-1, 0) \). ### Step-by-step Solution: 1. **Substitute \( x \) with \( \cos(\theta) \)**: Since \( x \) lies in the interval \([-1, 0)\), we can let \( x = \cos(\theta) \) where \( \theta \) is in the range \([\pi/2, \pi)\). **Hint**: This substitution helps us relate \( x \) to angles in trigonometric functions. 2. **Express \( 2x^2 - 1 \)**: Substitute \( x = \cos(\theta) \) into \( 2x^2 - 1 \): \[ 2x^2 - 1 = 2(\cos^2(\theta)) - 1 = \cos(2\theta) \] **Hint**: Use the double angle formula for cosine, \( \cos(2\theta) = 2\cos^2(\theta) - 1 \). 3. **Rewrite the expression**: Now we can rewrite the original expression: \[ \cos^{-1}(2x^2 - 1) - 2\sin^{-1}(x) = \cos^{-1}(\cos(2\theta)) - 2\sin^{-1}(\cos(\theta)) \] **Hint**: Recognize that \( \cos^{-1}(\cos(2\theta)) \) will yield \( 2\theta \) or \( 2\pi - 2\theta \) depending on the range of \( \theta \). 4. **Determine the value of \( \cos^{-1}(\cos(2\theta)) \)**: Since \( \theta \) is in \([\pi/2, \pi)\), \( 2\theta \) will be in \([\pi, 2\pi)\). Thus: \[ \cos^{-1}(\cos(2\theta)) = 2\pi - 2\theta \] **Hint**: The range of \( \cos^{-1} \) is \([0, \pi]\), so we need to adjust for the angle being in the second cycle. 5. **Calculate \( \sin^{-1}(\cos(\theta)) \)**: We know that: \[ \sin^{-1}(\cos(\theta)) = \frac{\pi}{2} - \theta \] Therefore: \[ 2\sin^{-1}(\cos(\theta)) = 2\left(\frac{\pi}{2} - \theta\right) = \pi - 2\theta \] **Hint**: Use the co-function identity \( \sin^{-1}(x) + \cos^{-1}(x) = \frac{\pi}{2} \). 6. **Combine the results**: Now substituting back into our expression: \[ \cos^{-1}(2x^2 - 1) - 2\sin^{-1}(x) = (2\pi - 2\theta) - (\pi - 2\theta) \] Simplifying this gives: \[ = 2\pi - 2\theta - \pi + 2\theta = \pi \] **Hint**: Carefully combine like terms to simplify the expression. ### Final Answer: Thus, the value of \( \cos^{-1}(2x^2 - 1) - 2\sin^{-1}(x) \) is \( \pi \).

To solve the problem, we need to find the value of \( \cos^{-1}(2x^2 - 1) - 2\sin^{-1}(x) \) given that \( x \in [-1, 0) \). ### Step-by-step Solution: 1. **Substitute \( x \) with \( \cos(\theta) \)**: Since \( x \) lies in the interval \([-1, 0)\), we can let \( x = \cos(\theta) \) where \( \theta \) is in the range \([\pi/2, \pi)\). **Hint**: This substitution helps us relate \( x \) to angles in trigonometric functions. ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Single correct|80 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.5|13 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

If x in [-1,0], then find the value of cos^(-1)(2x^2-1)-2sin^(-1)x

If x in (0, 1) , then find the value of tan^(-1) ((1 -x^(2))/(2x)) + cos^(-1) ((1 -x^(2))/(1 + x^(2)))

If tan^(-1)x = theta , find the value of sin^(-1).(2x)/(1+x^(2))

Find the value of cos( 2 cos^(-1) x + sin^(-1) x) " when " x = 1/5

Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))

Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))

If (x -1) (x^(2) + 1) gt 0 , then find the value of sin((1)/(2) tan^(-1).(2x)/(1 - x^(2)) - tan^(-1) x)

If (x -1) (x^(2) + 1) gt 0 , then find the value of sin((1)/(2) tan^(-1).(2x)/(1 - x^(2)) - tan^(-1) x)

Find the value of : sin (sin^(-1) x + cos^(-1) x)

If x<0 , then write the value of cos^(-1)((1-x^2)/(1+x^2)) in terms of tan^(-1)x