Home
Class 12
MATHS
If cot^(-1)(n/(pi))>(pi)/6, n in N, then...

If `cot^(-1)(n/(pi))>(pi)/6, n in N`, then the maximum value of n is :

A

6

B

7

C

5

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( \cot^{-1}\left(\frac{n}{\pi}\right) > \frac{\pi}{6} \) where \( n \) is a natural number, we can follow these steps: ### Step 1: Rewrite the inequality Given the inequality: \[ \cot^{-1}\left(\frac{n}{\pi}\right) > \frac{\pi}{6} \] ### Step 2: Apply the cotangent function Since \( \cot^{-1}(x) \) is a decreasing function, we can take the cotangent of both sides. This reverses the inequality: \[ \frac{n}{\pi} < \cot\left(\frac{\pi}{6}\right) \] ### Step 3: Calculate \( \cot\left(\frac{\pi}{6}\right) \) We know that: \[ \cot\left(\frac{\pi}{6}\right) = \frac{1}{\tan\left(\frac{\pi}{6}\right)} = \frac{1}{\frac{1}{\sqrt{3}}} = \sqrt{3} \] ### Step 4: Substitute the value of cotangent Now, substituting this value back into the inequality: \[ \frac{n}{\pi} < \sqrt{3} \] ### Step 5: Multiply both sides by \( \pi \) To eliminate the fraction, multiply both sides by \( \pi \) (since \( \pi > 0 \), the inequality remains unchanged): \[ n < \pi \sqrt{3} \] ### Step 6: Calculate \( \pi \sqrt{3} \) Using the approximate value of \( \pi \approx 3.14 \) and \( \sqrt{3} \approx 1.732 \): \[ \pi \sqrt{3} \approx 3.14 \times 1.732 \approx 5.441 \] ### Step 7: Determine the maximum natural number \( n \) Since \( n \) must be a natural number, the largest integer less than \( 5.441 \) is \( 5 \). ### Conclusion Thus, the maximum value of \( n \) is: \[ \boxed{5} \]

To solve the inequality \( \cot^{-1}\left(\frac{n}{\pi}\right) > \frac{\pi}{6} \) where \( n \) is a natural number, we can follow these steps: ### Step 1: Rewrite the inequality Given the inequality: \[ \cot^{-1}\left(\frac{n}{\pi}\right) > \frac{\pi}{6} \] ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked comprehension type|16 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.6|9 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

If cot^(-1)(n/(pi))lt(pi)/(6),ninN then find the minimum value of n

If cot^(-1)((n^2-10 n+21. 6)/pi)>pi/6, then the possible values of n is/are (a) 3 (b) 2 (c) 4 (d) 8

If cos^(-1)((n)/(2pi)) gt(2pi)/(3) then maximum and minimum values of integer n are respectively

If cos^(-1)((n)/(2pi))lt(2pi)/(3) then maximum and minimum values of integer in are respectively

If cos^(-1)(n)/(2pi)gt(2pi)/(3) then maximum and minimum values of integer in are respectively

If x in[(4n+1)(pi)/(2),(4n+3)(pi)/(2)] and n in N , then the value of int_(0)^(x) [cos t] dt , is

If cot^(-1)((n^2-10 n+21. 6)/pi)>pi/6, where x y<0 then the possible values of z is (are) 3 (b) 2 (c) 4 (d) 8

If tan^(-1)(x^2+3|x|-4)+cot^(-1)(4pi+sin^(-1)s in 14)=pi/2, t h e n the value of sin^(-1)2x is 6-2pi (b) 2pi-6 pi-3 (d) 3-pi

The minimum value of n for which tan^(-1)'n/pi gt (pi)/(4), n in N , is valid is 5.

f(n) = cot^2 (pi/n) + cot^2\ (2 pi)/n +...............+ cot^2\ ((n-1) pi)/n, ( n>1, n in N) then lim_(n rarr oo) f(n)/n^2 is equal to (A) 1/2 (B) 1/3 (C) 2/3 (D) 1

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Single correct
  1. cos^(-1) (cos (2 cot^(-1) (sqrt2 -1))) is equal to

    Text Solution

    |

  2. The value of sin^(-1){cot(sin^(-1)(sqrt((2-sqrt3)/4)+cos^(-1)(sqrt(12)...

    Text Solution

    |

  3. If cot^(-1)(n/(pi))>(pi)/6, n in N, then the maximum value of n is :

    Text Solution

    |

  4. If cosec^(-1) ( cosec x) " and " cosec ( cosec^(-1) x) are equal func...

    Text Solution

    |

  5. sec^(2) (tan^(-1) 2) + cosec^(2) (cot^(-1) 3) is equal to

    Text Solution

    |

  6. The maximum value of f(x)=tan^(-1)(((sqrt(12)-2)x^2)/(x^4+2x^2+3)) is...

    Text Solution

    |

  7. For the equation cos^(-1)x+cos^(-1)2x+pi=0 , the number of real soluti...

    Text Solution

    |

  8. The number of real solution of the equation tan^(-1) sqrt(x^(2) - 3x +...

    Text Solution

    |

  9. If sin^(-1)(x-1)+cos^(-1)(x-3)+tan^(-1)(x/(2-x^2))=cos^(-1)k+pi, then ...

    Text Solution

    |

  10. The number of real solution of the equation sqrt(1 + cos 2x) = sqrt2 s...

    Text Solution

    |

  11. The equation 3 cos^(-1) x - pi x - (pi)/(2) =0has

    Text Solution

    |

  12. Range of f(x)=sin^(-1)x+tan^(-1)x+sec^(-1)x is

    Text Solution

    |

  13. The value of underset( |x| to infty) lim cos( tan^(-1)(sin(tan^(-1))))...

    Text Solution

    |

  14. Find the range of tan^(-1)((2x)/(1+x^2))

    Text Solution

    |

  15. Equation [cot^(-1) x] + 2 [tan^(-1) x] = 0, where [.] denotes the grea...

    Text Solution

    |

  16. The number of integral values of k for which the equation sin^(-1)x+ta...

    Text Solution

    |

  17. The range of the values of p for which the equation sin cos^(-1) ( co...

    Text Solution

    |

  18. The number of the solutions of the equation 2 sin^(-1) sqrt(x^(2) + x ...

    Text Solution

    |

  19. complete solution set of tan^(2) (sin^(-1) x) gt 1 is

    Text Solution

    |

  20. The trigonometric equation sin^(-1)x=2sin^(-1)a has a solution for all...

    Text Solution

    |