Home
Class 12
MATHS
Range of f(x)=sin^(-1)x+tan^(-1)x+sec^(-...

Range of `f(x)=sin^(-1)x+tan^(-1)x+sec^(-1)x` is

A

`((pi)/(4), (3pi)/(4))`

B

`[(pi)/(4), (3pi)/(4)]`

C

`{(pi)/(4), (3pi)/(4)}`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \sin^{-1} x + \tan^{-1} x + \sec^{-1} x \), we will follow these steps: ### Step 1: Determine the Domain of Each Function 1. **Domain of \( \sin^{-1} x \)**: The domain is \( [-1, 1] \). 2. **Domain of \( \tan^{-1} x \)**: The domain is \( (-\infty, \infty) \). 3. **Domain of \( \sec^{-1} x \)**: The domain is \( (-\infty, -1] \cup [1, \infty) \). ### Step 2: Find the Common Domain The common domain of the function \( f(x) \) is the intersection of the domains of the individual functions: - The intersection of \( [-1, 1] \) (from \( \sin^{-1} x \)) and \( (-\infty, -1] \cup [1, \infty) \) (from \( \sec^{-1} x \)) is just the endpoints \( -1 \) and \( 1 \). Thus, the common domain is \( \{-1, 1\} \). ### Step 3: Evaluate \( f(x) \) at the Endpoints 1. **Evaluate at \( x = -1 \)**: \[ f(-1) = \sin^{-1}(-1) + \tan^{-1}(-1) + \sec^{-1}(-1) \] - \( \sin^{-1}(-1) = -\frac{\pi}{2} \) - \( \tan^{-1}(-1) = -\frac{\pi}{4} \) - \( \sec^{-1}(-1) = \pi \) Therefore, \[ f(-1) = -\frac{\pi}{2} - \frac{\pi}{4} + \pi = -\frac{\pi}{2} - \frac{\pi}{4} + \frac{4\pi}{4} = \frac{\pi}{4} \] 2. **Evaluate at \( x = 1 \)**: \[ f(1) = \sin^{-1}(1) + \tan^{-1}(1) + \sec^{-1}(1) \] - \( \sin^{-1}(1) = \frac{\pi}{2} \) - \( \tan^{-1}(1) = \frac{\pi}{4} \) - \( \sec^{-1}(1) = 0 \) Therefore, \[ f(1) = \frac{\pi}{2} + \frac{\pi}{4} + 0 = \frac{\pi}{2} + \frac{\pi}{4} = \frac{2\pi}{4} + \frac{\pi}{4} = \frac{3\pi}{4} \] ### Step 4: Conclusion on the Range The values of \( f(x) \) at the endpoints are: - \( f(-1) = \frac{\pi}{4} \) - \( f(1) = \frac{3\pi}{4} \) Thus, the range of \( f(x) \) is: \[ \left[ \frac{\pi}{4}, \frac{3\pi}{4} \right] \] ### Final Answer The range of \( f(x) = \sin^{-1} x + \tan^{-1} x + \sec^{-1} x \) is \( \left[ \frac{\pi}{4}, \frac{3\pi}{4} \right] \).

To find the range of the function \( f(x) = \sin^{-1} x + \tan^{-1} x + \sec^{-1} x \), we will follow these steps: ### Step 1: Determine the Domain of Each Function 1. **Domain of \( \sin^{-1} x \)**: The domain is \( [-1, 1] \). 2. **Domain of \( \tan^{-1} x \)**: The domain is \( (-\infty, \infty) \). 3. **Domain of \( \sec^{-1} x \)**: The domain is \( (-\infty, -1] \cup [1, \infty) \). ### Step 2: Find the Common Domain ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked comprehension type|16 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.6|9 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

Find the domain and range of f(x)=sin^(-1)x+tan^(-1)x+sec^(-1)x.

Range of f(x)=sin^(- 1)x+sec^(- 1)x is

Find the range of f(x) = sin^(-1) x + tan^(-1) x + cos^(-1) x

Find the range of f(x)=sin^(-1)x+tan^(-1)x+cos^(-1)xdot

Find the range of f(x)=sin^(-1)x+tan^(-1)x+cos^(-1)xdot

Column I, Column II Range of f(x)=sin^(-1)x+cos^(-1)x+cot^(-1)xi s , p. [0,pi/2]uu[pi/2,pi] Range of f(x)= cot^(-1)x+tan^(-1)x+cos e c^(-1)xi s , q. [pi/2,(3pi)/2] Range of f(x)=cot^(-1)x+tan^(-1)x+cos^(-1)xi s , r. [0,pi] Range of f(x)= sec^(-1)x+cos e c^(-1)x+sin^(-1)xi s , s. [(3pi)/4,(5pi)/4]

Range of f(x)=sin^(-1)x+tan^(-1)x+sqrt(x+1) is [a,b] then b+a is equal to

Range of f(x)=sin^(-1)x+x^(2)+4x+1 is :

If the range of f(x)=tan^(1)x+2sin^(-1)x+cos^(-1)x is [a, b] , then

Number of integers in the range of f(x)=1/pi(sin^(-1)x+tan^(-1)x)+(x+1)/(x^2+2x+5) is 0 b. 3 c. 2 d. 1

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Single correct
  1. The number of real solution of the equation sqrt(1 + cos 2x) = sqrt2 s...

    Text Solution

    |

  2. The equation 3 cos^(-1) x - pi x - (pi)/(2) =0has

    Text Solution

    |

  3. Range of f(x)=sin^(-1)x+tan^(-1)x+sec^(-1)x is

    Text Solution

    |

  4. The value of underset( |x| to infty) lim cos( tan^(-1)(sin(tan^(-1))))...

    Text Solution

    |

  5. Find the range of tan^(-1)((2x)/(1+x^2))

    Text Solution

    |

  6. Equation [cot^(-1) x] + 2 [tan^(-1) x] = 0, where [.] denotes the grea...

    Text Solution

    |

  7. The number of integral values of k for which the equation sin^(-1)x+ta...

    Text Solution

    |

  8. The range of the values of p for which the equation sin cos^(-1) ( co...

    Text Solution

    |

  9. The number of the solutions of the equation 2 sin^(-1) sqrt(x^(2) + x ...

    Text Solution

    |

  10. complete solution set of tan^(2) (sin^(-1) x) gt 1 is

    Text Solution

    |

  11. The trigonometric equation sin^(-1)x=2sin^(-1)a has a solution for all...

    Text Solution

    |

  12. The number of solution of equation sin^(-1)x+nsin^(-1)(1-x)=(mpi)/2,w ...

    Text Solution

    |

  13. If |cos^(-1) ((1 -x^(2))/(1 + x^(2)))| lt (pi)/(3), then

    Text Solution

    |

  14. The value of sin^(-1) (sin 12) + cos^(-1) (cos 12) is equal to

    Text Solution

    |

  15. The value of the expression sin^(-1)(sin(22pi)/7)cos^(-1)(cos(5pi)/3)+...

    Text Solution

    |

  16. The value of sin^(-1)("cos"(cos^(-1)(cosx)+sin^(-1)(sinx))), where x i...

    Text Solution

    |

  17. If alpha in (-(3pi)/2,-pi) , then the value of tan^(-1)(cotalpha)-cot^...

    Text Solution

    |

  18. tan^-1[(cos x)/(1+sin x)] is equal to

    Text Solution

    |

  19. If f(x)=x^(11)+x^9-x^7+x^3+1 and f(sin^(-1)(sin8)=alpha,alpha is const...

    Text Solution

    |

  20. If sin^(-1) : [-1, 1] rarr [(pi)/(2), (3pi)/(2)] and cos^(-1) : [-1, 1...

    Text Solution

    |