Home
Class 12
MATHS
The number of the solutions of the equat...

The number of the solutions of the equation `2 sin^(-1) sqrt(x^(2) + x + 1) + cos^(-1) sqrt(x^(2) + x) = (3pi)/(2)` is

A

0

B

`-1`

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2 \sin^{-1}(\sqrt{x^2 + x + 1}) + \cos^{-1}(\sqrt{x^2 + x}) = \frac{3\pi}{2} \), we will follow these steps: ### Step 1: Determine the domain of the functions involved The expressions inside the inverse sine and cosine functions must be valid. 1. For \( \sqrt{x^2 + x + 1} \): - Since \( x^2 + x + 1 \) is always positive (it has no real roots), it is valid for all \( x \). - The range of \( \sqrt{x^2 + x + 1} \) is \( [1, \infty) \) since the minimum value occurs at \( x = -\frac{1}{2} \), giving \( \sqrt{\frac{3}{4}} \). 2. For \( \sqrt{x^2 + x} \): - This expression is valid when \( x^2 + x \geq 0 \), which factors to \( x(x + 1) \geq 0 \). - The solutions to this inequality are \( x \leq -1 \) or \( x \geq 0 \). ### Step 2: Analyze the ranges of the inverse functions - The range of \( \sin^{-1}(y) \) is \( \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \) for \( y \in [-1, 1] \). - The range of \( \cos^{-1}(y) \) is \( [0, \pi] \) for \( y \in [0, 1] \). ### Step 3: Set up the equation The equation can be rewritten as: \[ 2 \sin^{-1}(\sqrt{x^2 + x + 1}) + \cos^{-1}(\sqrt{x^2 + x}) = \frac{3\pi}{2} \] Let \( y_1 = \sqrt{x^2 + x + 1} \) and \( y_2 = \sqrt{x^2 + x} \). ### Step 4: Solve for specific values of \( x \) 1. **Case 1: \( x = -1 \)** - \( y_1 = \sqrt{(-1)^2 + (-1) + 1} = \sqrt{1} = 1 \) - \( y_2 = \sqrt{(-1)^2 + (-1)} = \sqrt{0} = 0 \) - LHS: \( 2 \sin^{-1}(1) + \cos^{-1}(0) = 2 \cdot \frac{\pi}{2} + \frac{\pi}{2} = \frac{3\pi}{2} \) (valid solution) 2. **Case 2: \( x = 0 \)** - \( y_1 = \sqrt{0^2 + 0 + 1} = \sqrt{1} = 1 \) - \( y_2 = \sqrt{0^2 + 0} = \sqrt{0} = 0 \) - LHS: \( 2 \sin^{-1}(1) + \cos^{-1}(0) = 2 \cdot \frac{\pi}{2} + \frac{\pi}{2} = \frac{3\pi}{2} \) (valid solution) ### Step 5: Conclusion Both \( x = -1 \) and \( x = 0 \) satisfy the equation, hence the number of solutions is **2**.

To solve the equation \( 2 \sin^{-1}(\sqrt{x^2 + x + 1}) + \cos^{-1}(\sqrt{x^2 + x}) = \frac{3\pi}{2} \), we will follow these steps: ### Step 1: Determine the domain of the functions involved The expressions inside the inverse sine and cosine functions must be valid. 1. For \( \sqrt{x^2 + x + 1} \): - Since \( x^2 + x + 1 \) is always positive (it has no real roots), it is valid for all \( x \). - The range of \( \sqrt{x^2 + x + 1} \) is \( [1, \infty) \) since the minimum value occurs at \( x = -\frac{1}{2} \), giving \( \sqrt{\frac{3}{4}} \). ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked comprehension type|16 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.6|9 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

The number of solutions for the equation sin^(-1) sqrt((x^(2)-x+1))+cos^(-1)sqrt((x^(2)-x))=pi is :

The number of real solution of the equation tan^(-1) sqrt(x^(2) - 3x + 2) + cos^(-1) sqrt(4x - x^(2) -3) = pi is

The number of real solution(s) of the equation sin^(-1)sqrt(x^(2)-x+1)+cos^(-1)sqrt(x^(2)-x)=pi is/are

The number of real solution of the equation tan^(-1) sqrt(x^2-3x +7) + cos^(-1) sqrt(4x^2-x + 3) = pi is

The sum of the solution of the equation 2sin^(-1)sqrt(x^2+x+1)+cos^(-1)sqrt(x^2+x)=(3pi)/2 is 0 (b) -1 (c) 1 (d) 2

The solution set of equation sin^(-1) sqrt(1-x^2) + cos^(-1) x = cot^(-1) (sqrt(1 - x^2)/x) - sin^(-1) x , is

The number of solutions of the equation sin((pix)/(2sqrt3))=x^2-2sqrt3x+4

The number of solution of the equation |tan^(-1)|x||=sqrt((x^(2)+1)^(2)-4x^(2)) is

Find the number of real solutions of the equation sin^(-1)(e^(x))+cos^(-1)(x^(2))=pi//2 .

The number of solutions of the equation sin x . Sin 2x. Sin 3x=1 in [0,2pi] is

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Single correct
  1. The number of integral values of k for which the equation sin^(-1)x+ta...

    Text Solution

    |

  2. The range of the values of p for which the equation sin cos^(-1) ( co...

    Text Solution

    |

  3. The number of the solutions of the equation 2 sin^(-1) sqrt(x^(2) + x ...

    Text Solution

    |

  4. complete solution set of tan^(2) (sin^(-1) x) gt 1 is

    Text Solution

    |

  5. The trigonometric equation sin^(-1)x=2sin^(-1)a has a solution for all...

    Text Solution

    |

  6. The number of solution of equation sin^(-1)x+nsin^(-1)(1-x)=(mpi)/2,w ...

    Text Solution

    |

  7. If |cos^(-1) ((1 -x^(2))/(1 + x^(2)))| lt (pi)/(3), then

    Text Solution

    |

  8. The value of sin^(-1) (sin 12) + cos^(-1) (cos 12) is equal to

    Text Solution

    |

  9. The value of the expression sin^(-1)(sin(22pi)/7)cos^(-1)(cos(5pi)/3)+...

    Text Solution

    |

  10. The value of sin^(-1)("cos"(cos^(-1)(cosx)+sin^(-1)(sinx))), where x i...

    Text Solution

    |

  11. If alpha in (-(3pi)/2,-pi) , then the value of tan^(-1)(cotalpha)-cot^...

    Text Solution

    |

  12. tan^-1[(cos x)/(1+sin x)] is equal to

    Text Solution

    |

  13. If f(x)=x^(11)+x^9-x^7+x^3+1 and f(sin^(-1)(sin8)=alpha,alpha is const...

    Text Solution

    |

  14. If sin^(-1) : [-1, 1] rarr [(pi)/(2), (3pi)/(2)] and cos^(-1) : [-1, 1...

    Text Solution

    |

  15. If the difference between the roots of the equation x^2+""a x""+""1...

    Text Solution

    |

  16. 'solve tan ( sin − 1 ( cos ( sin − 1 x ) ) ) tan ( cos − 1 ( sin ( cos...

    Text Solution

    |

  17. There exists a positive real number of x satisfying "cos"(tan^(-1)x)=x...

    Text Solution

    |

  18. If tan^(-1)(sqrt(1+x^2-1))/x=4^0 then x=tan2^0 (b) x=tan4^0 x=tan1/4...

    Text Solution

    |

  19. The value of (alpha^3)/2cos e c^2(1/2tan^(-1)alpha/beta)+(beta^3)/2sec...

    Text Solution

    |

  20. tan(pi/4+1/2cos^-1x)+tan(pi/4-1/2cos^-1x), x!=0 is equal to

    Text Solution

    |