Home
Class 12
MATHS
If |cos^(-1) ((1 -x^(2))/(1 + x^(2)))| l...

If `|cos^(-1) ((1 -x^(2))/(1 + x^(2)))| lt (pi)/(3)`, then

A

`x in [-(1)/(3), (1)/(sqrt3)]`

B

`x in (-(1)/(sqrt3), (1)/(sqrt3))`

C

`x in (0, (1)/(sqrt3))`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( |\cos^{-1} \left( \frac{1 - x^2}{1 + x^2} \right)| < \frac{\pi}{3} \), we will follow these steps: ### Step 1: Remove the Absolute Value Since the expression inside the absolute value can take values from \(0\) to \(\pi\), we can rewrite the inequality without the absolute value: \[ -\frac{\pi}{3} < \cos^{-1} \left( \frac{1 - x^2}{1 + x^2} \right) < \frac{\pi}{3} \] ### Step 2: Adjust the Range of the Inverse Cosine The range of \(\cos^{-1}(y)\) is from \(0\) to \(\pi\). Therefore, we can replace \(-\frac{\pi}{3}\) with \(0\): \[ 0 < \cos^{-1} \left( \frac{1 - x^2}{1 + x^2} \right) < \frac{\pi}{3} \] ### Step 3: Apply the Cosine Function To eliminate the inverse cosine, we take the cosine of all parts of the inequality: \[ \cos(0) > \frac{1 - x^2}{1 + x^2} > \cos\left(\frac{\pi}{3}\right) \] This simplifies to: \[ 1 > \frac{1 - x^2}{1 + x^2} > \frac{1}{2} \] ### Step 4: Solve the Inequalities Now we will solve the two inequalities separately. #### Inequality 1: \(1 > \frac{1 - x^2}{1 + x^2}\) Cross-multiplying gives: \[ 1(1 + x^2) > 1 - x^2 \] This simplifies to: \[ 1 + x^2 > 1 - x^2 \] \[ 2x^2 > 0 \quad \Rightarrow \quad x^2 > 0 \] This means \(x \neq 0\). #### Inequality 2: \(\frac{1 - x^2}{1 + x^2} > \frac{1}{2}\) Cross-multiplying gives: \[ 2(1 - x^2) > 1 + x^2 \] This simplifies to: \[ 2 - 2x^2 > 1 + x^2 \] \[ 2 - 1 > 2x^2 + x^2 \] \[ 1 > 3x^2 \quad \Rightarrow \quad x^2 < \frac{1}{3} \] This means: \[ -\frac{1}{\sqrt{3}} < x < \frac{1}{\sqrt{3}} \] ### Step 5: Combine the Results From the inequalities, we have: 1. \(x^2 > 0\) implies \(x \neq 0\). 2. \(x^2 < \frac{1}{3}\) implies \(x\) is in the interval \(-\frac{1}{\sqrt{3}} < x < \frac{1}{\sqrt{3}}\). Thus, the final solution is: \[ x \in \left(-\frac{1}{\sqrt{3}}, 0\right) \cup \left(0, \frac{1}{\sqrt{3}}\right) \]

To solve the inequality \( |\cos^{-1} \left( \frac{1 - x^2}{1 + x^2} \right)| < \frac{\pi}{3} \), we will follow these steps: ### Step 1: Remove the Absolute Value Since the expression inside the absolute value can take values from \(0\) to \(\pi\), we can rewrite the inequality without the absolute value: \[ -\frac{\pi}{3} < \cos^{-1} \left( \frac{1 - x^2}{1 + x^2} \right) < \frac{\pi}{3} \] ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked comprehension type|16 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.6|9 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

y = cos ^(-1)((1 - x^(2))/(1+ x^(2))) 0 lt x lt 1

If x lt 0 , the prove that cos^(-1) ((1 + x)/(sqrt(2(1 + x^(2))))) = (pi)/(4) - tan^(-1) x

If |cos^-1((1-x^2)/(1+x^2))| < pi/3, then x belongs to the interval

Solve sin^(-1) [sin((2x^(2) + 4)/(1 + x^(2)))] lt pi -3

Prove that 3 tan^(-1) x= {(tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " -(1)/(sqrt3) lt x lt (1)/(sqrt3)),(pi + tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " x gt (1)/(sqrt3)),(-pi + tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " x lt - (1)/(sqrt3)):}

If (1)/(sqrt2) lt x lt 1 , then prove that cos^(-1) x + cos^(-1) ((x + sqrt(1 - x^(2)))/(sqrt2)) = (pi)/(4)

Prove that : cos^(-1) x + cos^(-1) ((x)/(2) + (sqrt( 3-3x^2) )/( 2) ) = (pi)/ (3)

Differentiate cos^(-1)((1-x^2)/(1+x^2)) , 0lt xlt1 with respect to x

y = cos ^(-1)((2x)/(1 +x^(2))),-1 lt x lt1 . find dy/dx

Prove that sin^(-1). ((x + sqrt(1 - x^(2))/(sqrt2)) = sin^(-1) x + (pi)/(4) , where - (1)/(sqrt2) lt x lt(1)/(sqrt2)

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Single correct
  1. The trigonometric equation sin^(-1)x=2sin^(-1)a has a solution for all...

    Text Solution

    |

  2. The number of solution of equation sin^(-1)x+nsin^(-1)(1-x)=(mpi)/2,w ...

    Text Solution

    |

  3. If |cos^(-1) ((1 -x^(2))/(1 + x^(2)))| lt (pi)/(3), then

    Text Solution

    |

  4. The value of sin^(-1) (sin 12) + cos^(-1) (cos 12) is equal to

    Text Solution

    |

  5. The value of the expression sin^(-1)(sin(22pi)/7)cos^(-1)(cos(5pi)/3)+...

    Text Solution

    |

  6. The value of sin^(-1)("cos"(cos^(-1)(cosx)+sin^(-1)(sinx))), where x i...

    Text Solution

    |

  7. If alpha in (-(3pi)/2,-pi) , then the value of tan^(-1)(cotalpha)-cot^...

    Text Solution

    |

  8. tan^-1[(cos x)/(1+sin x)] is equal to

    Text Solution

    |

  9. If f(x)=x^(11)+x^9-x^7+x^3+1 and f(sin^(-1)(sin8)=alpha,alpha is const...

    Text Solution

    |

  10. If sin^(-1) : [-1, 1] rarr [(pi)/(2), (3pi)/(2)] and cos^(-1) : [-1, 1...

    Text Solution

    |

  11. If the difference between the roots of the equation x^2+""a x""+""1...

    Text Solution

    |

  12. 'solve tan ( sin − 1 ( cos ( sin − 1 x ) ) ) tan ( cos − 1 ( sin ( cos...

    Text Solution

    |

  13. There exists a positive real number of x satisfying "cos"(tan^(-1)x)=x...

    Text Solution

    |

  14. If tan^(-1)(sqrt(1+x^2-1))/x=4^0 then x=tan2^0 (b) x=tan4^0 x=tan1/4...

    Text Solution

    |

  15. The value of (alpha^3)/2cos e c^2(1/2tan^(-1)alpha/beta)+(beta^3)/2sec...

    Text Solution

    |

  16. tan(pi/4+1/2cos^-1x)+tan(pi/4-1/2cos^-1x), x!=0 is equal to

    Text Solution

    |

  17. If sin^(-1)x+sin^(-1)y=pi/2,t h e n(1+x^4+y^4)/(x^2-x^2y^2+y^2) is equ...

    Text Solution

    |

  18. Prove that : 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1)...

    Text Solution

    |

  19. If sin^(-1)a+sin^(-1)b+sin^(-1)c=pi, then the value of asqrt((1-a^2))+...

    Text Solution

    |

  20. lf asin^-1 x -bcos^-1 x=c,then asin^-1 x +bcos^-1 equal to

    Text Solution

    |