Home
Class 12
MATHS
The value of sin^(-1) (sin 12) + cos^(-1...

The value of `sin^(-1) (sin 12) + cos^(-1) (cos 12)` is equal to

A

zero

B

`24 - 2pi`

C

`4pi -24`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \sin^{-1}(\sin 12) + \cos^{-1}(\cos 12) \), we can follow these steps: ### Step 1: Understanding the Range of Inverse Functions The function \( \sin^{-1}(x) \) (or arcsin) has a range of \( \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \) and \( \cos^{-1}(x) \) (or arccos) has a range of \( [0, \pi] \). ### Step 2: Simplifying \( \sin^{-1}(\sin 12) \) Since \( 12 \) radians is greater than \( \frac{\pi}{2} \) (approximately 1.57 radians), we need to find an equivalent angle within the range of \( \sin^{-1} \). We can express \( 12 \) in terms of \( 2\pi \): \[ 12 \text{ radians} = 12 - 4\pi \text{ radians} \quad (\text{since } 4\pi \approx 12.566 \text{ radians}) \] Now, we can find \( \sin^{-1}(\sin 12) \): \[ \sin^{-1}(\sin 12) = \sin^{-1}(\sin(12 - 4\pi)) = 12 - 4\pi \] ### Step 3: Simplifying \( \cos^{-1}(\cos 12) \) Similarly, since \( 12 \) radians is also greater than \( \pi \), we can express \( \cos^{-1}(\cos 12) \) as: \[ \cos^{-1}(\cos 12) = \cos^{-1}(\cos(12 - 2\pi)) = 12 - 2\pi \] ### Step 4: Adding the Two Results Now we can add the two results together: \[ \sin^{-1}(\sin 12) + \cos^{-1}(\cos 12) = (12 - 4\pi) + (12 - 2\pi) \] Combining these gives: \[ = 12 - 4\pi + 12 - 2\pi = 24 - 6\pi \] ### Step 5: Final Result Thus, the value of \( \sin^{-1}(\sin 12) + \cos^{-1}(\cos 12) \) is: \[ \boxed{24 - 6\pi} \]

To solve the problem \( \sin^{-1}(\sin 12) + \cos^{-1}(\cos 12) \), we can follow these steps: ### Step 1: Understanding the Range of Inverse Functions The function \( \sin^{-1}(x) \) (or arcsin) has a range of \( \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \) and \( \cos^{-1}(x) \) (or arccos) has a range of \( [0, \pi] \). ### Step 2: Simplifying \( \sin^{-1}(\sin 12) \) Since \( 12 \) radians is greater than \( \frac{\pi}{2} \) (approximately 1.57 radians), we need to find an equivalent angle within the range of \( \sin^{-1} \). We can express \( 12 \) in terms of \( 2\pi \): ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked comprehension type|16 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.6|9 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

The value of sin^(-1)(sin12)+sin^(-1)(cos12)=

The value of sin^(-1)sin17+cos^(-1)cos10 is equal to

The value of tan^(-1)(1)+cos^(-1)(-1/2)+sin^(-1)(-1/2) is equal to pi/4 b. (5pi)/(12) c. (3pi)/4 d. (13pi)/(12)

If x = sin^(-1)(sin 10) and y = cos^(-1)(cos 10) then y - x is equal to:

Find the value of : sin (sin^(-1) x + cos^(-1) x)

The value of cos^(-1)(-1)+sin^(-1)(1) is

The value of 3(sin^4t+cos^4t-1)/(sin^6t+cos^6t-1) is equal to __________

The value of 3(sin^4t+cos^4t-1)/(sin^6t+cos^6t-1) is equal to __________

The value of (sin10^(@)+sin20^(@))/(cos10^(@)+cos20^(@)) equals

If sin^-1 x+sin^-1=(2pi)/3, then cos^-1 x cos^-1 y is equal to

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Single correct
  1. The number of solution of equation sin^(-1)x+nsin^(-1)(1-x)=(mpi)/2,w ...

    Text Solution

    |

  2. If |cos^(-1) ((1 -x^(2))/(1 + x^(2)))| lt (pi)/(3), then

    Text Solution

    |

  3. The value of sin^(-1) (sin 12) + cos^(-1) (cos 12) is equal to

    Text Solution

    |

  4. The value of the expression sin^(-1)(sin(22pi)/7)cos^(-1)(cos(5pi)/3)+...

    Text Solution

    |

  5. The value of sin^(-1)("cos"(cos^(-1)(cosx)+sin^(-1)(sinx))), where x i...

    Text Solution

    |

  6. If alpha in (-(3pi)/2,-pi) , then the value of tan^(-1)(cotalpha)-cot^...

    Text Solution

    |

  7. tan^-1[(cos x)/(1+sin x)] is equal to

    Text Solution

    |

  8. If f(x)=x^(11)+x^9-x^7+x^3+1 and f(sin^(-1)(sin8)=alpha,alpha is const...

    Text Solution

    |

  9. If sin^(-1) : [-1, 1] rarr [(pi)/(2), (3pi)/(2)] and cos^(-1) : [-1, 1...

    Text Solution

    |

  10. If the difference between the roots of the equation x^2+""a x""+""1...

    Text Solution

    |

  11. 'solve tan ( sin − 1 ( cos ( sin − 1 x ) ) ) tan ( cos − 1 ( sin ( cos...

    Text Solution

    |

  12. There exists a positive real number of x satisfying "cos"(tan^(-1)x)=x...

    Text Solution

    |

  13. If tan^(-1)(sqrt(1+x^2-1))/x=4^0 then x=tan2^0 (b) x=tan4^0 x=tan1/4...

    Text Solution

    |

  14. The value of (alpha^3)/2cos e c^2(1/2tan^(-1)alpha/beta)+(beta^3)/2sec...

    Text Solution

    |

  15. tan(pi/4+1/2cos^-1x)+tan(pi/4-1/2cos^-1x), x!=0 is equal to

    Text Solution

    |

  16. If sin^(-1)x+sin^(-1)y=pi/2,t h e n(1+x^4+y^4)/(x^2-x^2y^2+y^2) is equ...

    Text Solution

    |

  17. Prove that : 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1)...

    Text Solution

    |

  18. If sin^(-1)a+sin^(-1)b+sin^(-1)c=pi, then the value of asqrt((1-a^2))+...

    Text Solution

    |

  19. lf asin^-1 x -bcos^-1 x=c,then asin^-1 x +bcos^-1 equal to

    Text Solution

    |

  20. The solution of the inequality "log"(2) sin^(-1) x gt "log"(1//2) cos^...

    Text Solution

    |