Home
Class 12
MATHS
The value of the expression sin^(-1)(sin...

The value of the expression `sin^(-1)(sin(22pi)/7)cos^(-1)(cos(5pi)/3)+tan^(-1)(tan(5pi)/7)+sin^(-1)(cos2)` is `(17pi)/(42)-2` (b) `-2` `(-pi)/(21)-2` (d) `non eoft h e s e`

A

`(17 pi)/(42) -2`

B

`-2`

C

`(-pi)/(21) -2`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sin^{-1}(\sin(22\pi/7)) + \cos^{-1}(\cos(5\pi/3)) + \tan^{-1}(\tan(5\pi/7)) + \sin^{-1}(\cos(2)) \), we will simplify each term step by step. ### Step 1: Simplifying \( \sin^{-1}(\sin(22\pi/7)) \) 1. **Find the equivalent angle**: \[ 22\pi/7 = 3\pi + \pi/7 \] Since \( \sin(x) \) is periodic with period \( 2\pi \), we can reduce \( 22\pi/7 \) to: \[ 22\pi/7 - 2\pi = 22\pi/7 - 14\pi/7 = 8\pi/7 \] Now, \( \sin(22\pi/7) = \sin(8\pi/7) \). 2. **Determine the value of \( \sin^{-1}(\sin(8\pi/7)) \)**: Since \( 8\pi/7 \) is in the third quadrant, we have: \[ \sin^{-1}(\sin(8\pi/7)) = \pi - 8\pi/7 = -\pi/7 \] ### Step 2: Simplifying \( \cos^{-1}(\cos(5\pi/3)) \) 1. **Find the equivalent angle**: \[ 5\pi/3 = 2\pi - \pi/3 \] Thus, \( \cos(5\pi/3) = \cos(-\pi/3) = \cos(\pi/3) \). 2. **Determine the value of \( \cos^{-1}(\cos(5\pi/3)) \)**: Since \( \cos^{-1} \) gives the principal value in the range \( [0, \pi] \): \[ \cos^{-1}(\cos(5\pi/3)) = \pi/3 \] ### Step 3: Simplifying \( \tan^{-1}(\tan(5\pi/7)) \) 1. **Determine the value of \( \tan^{-1}(\tan(5\pi/7)) \)**: Since \( 5\pi/7 \) is in the second quadrant: \[ \tan^{-1}(\tan(5\pi/7)) = \pi - 5\pi/7 = 2\pi/7 \] ### Step 4: Simplifying \( \sin^{-1}(\cos(2)) \) 1. **Use the identity**: \[ \sin^{-1}(x) + \cos^{-1}(x) = \frac{\pi}{2} \] Thus: \[ \sin^{-1}(\cos(2)) = \frac{\pi}{2} - 2 \] ### Step 5: Combine all parts Now, we combine all the simplified parts: \[ \sin^{-1}(\sin(22\pi/7)) + \cos^{-1}(\cos(5\pi/3)) + \tan^{-1}(\tan(5\pi/7)) + \sin^{-1}(\cos(2)) \] Substituting the values we found: \[ -\frac{\pi}{7} + \frac{\pi}{3} + \frac{2\pi}{7} + \left(\frac{\pi}{2} - 2\right) \] ### Step 6: Finding a common denominator The common denominator for \( 7, 3, 2 \) is \( 42 \): 1. Convert each term: \[ -\frac{\pi}{7} = -\frac{6\pi}{42}, \quad \frac{\pi}{3} = \frac{14\pi}{42}, \quad \frac{2\pi}{7} = \frac{12\pi}{42}, \quad \frac{\pi}{2} = \frac{21\pi}{42} \] 2. Combine: \[ -\frac{6\pi}{42} + \frac{14\pi}{42} + \frac{12\pi}{42} + \frac{21\pi}{42} - 2 \] \[ = \frac{41\pi}{42} - 2 \] ### Final Result Thus, the final value of the expression is: \[ \frac{41\pi}{42} - 2 \]

To solve the expression \( \sin^{-1}(\sin(22\pi/7)) + \cos^{-1}(\cos(5\pi/3)) + \tan^{-1}(\tan(5\pi/7)) + \sin^{-1}(\cos(2)) \), we will simplify each term step by step. ### Step 1: Simplifying \( \sin^{-1}(\sin(22\pi/7)) \) 1. **Find the equivalent angle**: \[ 22\pi/7 = 3\pi + \pi/7 \] ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked comprehension type|16 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.6|9 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

The value of the expression sin^(-1)(sin(22pi)/7)+cos^(-1)(cos(5pi)/3)+tan^(-1)(tan(5pi)/7)+sin^(-1)(cos2) is (a) (17pi)/(42)-2 (b) -2 (c) (-pi)/(21)-2 (d) non eoft h e s e

Evaluate each of the following: sin^(-1)(sin(2pi)/3) (ii) cos^(-1)(cos(7pi)/6) (iii) tan^(-1)(tan(3pi)/4)

Evaluate the following: 1. sin^(-1)(s i n(2pi)/3) 2. cos^(-1)(c o s(7pi)/6) 3. tan^(-1)(t a n(2pi)/3)

Show that sin^(- 1)(sin((33pi)/7))+cos^(- 1)(cos((46pi)/7))+tan^-1(-tan((13pi)/8))+cot^-1(cot(-(19pi)/8))=(13pi)/7

What is the value of cos^(-1)(cos(2pi)/3)+sin^(-1)(sin(2pi)/3) ?

sin^(2) (pi/6)+cos^(2) (pi/3)-tan^(2) (pi/4)=-1/2

"sin^(2)(pi)/(6)+cos^(2)(pi)/(3)-tan^(2)(pi)/(4)=-(1)/(2)"

The value of cos^(-1)(cos((5pi)/3))+sin^(-1)(sin((5pi)/3)) is (a) pi/2 (b) (5pi)/3 (c) (10pi)/3 (d) 0

Write the principal value of cos^(-1)(cos(2pi)/3)+sin^(-1)(sin(2pi)/3)

Write the principal value of cos^(-1)(cos((2pi)/3))+sin^(-1)(sin((2pi)/3))

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Single correct
  1. If |cos^(-1) ((1 -x^(2))/(1 + x^(2)))| lt (pi)/(3), then

    Text Solution

    |

  2. The value of sin^(-1) (sin 12) + cos^(-1) (cos 12) is equal to

    Text Solution

    |

  3. The value of the expression sin^(-1)(sin(22pi)/7)cos^(-1)(cos(5pi)/3)+...

    Text Solution

    |

  4. The value of sin^(-1)("cos"(cos^(-1)(cosx)+sin^(-1)(sinx))), where x i...

    Text Solution

    |

  5. If alpha in (-(3pi)/2,-pi) , then the value of tan^(-1)(cotalpha)-cot^...

    Text Solution

    |

  6. tan^-1[(cos x)/(1+sin x)] is equal to

    Text Solution

    |

  7. If f(x)=x^(11)+x^9-x^7+x^3+1 and f(sin^(-1)(sin8)=alpha,alpha is const...

    Text Solution

    |

  8. If sin^(-1) : [-1, 1] rarr [(pi)/(2), (3pi)/(2)] and cos^(-1) : [-1, 1...

    Text Solution

    |

  9. If the difference between the roots of the equation x^2+""a x""+""1...

    Text Solution

    |

  10. 'solve tan ( sin − 1 ( cos ( sin − 1 x ) ) ) tan ( cos − 1 ( sin ( cos...

    Text Solution

    |

  11. There exists a positive real number of x satisfying "cos"(tan^(-1)x)=x...

    Text Solution

    |

  12. If tan^(-1)(sqrt(1+x^2-1))/x=4^0 then x=tan2^0 (b) x=tan4^0 x=tan1/4...

    Text Solution

    |

  13. The value of (alpha^3)/2cos e c^2(1/2tan^(-1)alpha/beta)+(beta^3)/2sec...

    Text Solution

    |

  14. tan(pi/4+1/2cos^-1x)+tan(pi/4-1/2cos^-1x), x!=0 is equal to

    Text Solution

    |

  15. If sin^(-1)x+sin^(-1)y=pi/2,t h e n(1+x^4+y^4)/(x^2-x^2y^2+y^2) is equ...

    Text Solution

    |

  16. Prove that : 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1)...

    Text Solution

    |

  17. If sin^(-1)a+sin^(-1)b+sin^(-1)c=pi, then the value of asqrt((1-a^2))+...

    Text Solution

    |

  18. lf asin^-1 x -bcos^-1 x=c,then asin^-1 x +bcos^-1 equal to

    Text Solution

    |

  19. The solution of the inequality "log"(2) sin^(-1) x gt "log"(1//2) cos^...

    Text Solution

    |

  20. sin − 1 ( sin θ ) > π 2 − sin − 1 ( sin θ ) find the range of θ

    Text Solution

    |