Home
Class 12
MATHS
The value of sin^(-1)("cos"(cos^(-1)(cos...

The value of `sin^(-1)("cos"(cos^(-1)(cosx)+sin^(-1)(sinx))),` where `x in (pi/2,pi)` , is equal to `pi/2` (b) `-pi` (c) `pi` (d) `-pi/2`

A

`(pi)/(2)`

B

`-pi`

C

`pi`

D

`-(pi)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sin^{-1}(\cos(\cos^{-1}(\cos x) + \sin^{-1}(\sin x))) \) where \( x \in \left(\frac{\pi}{2}, \pi\right) \), we will follow these steps: ### Step 1: Understand the Quadrant Since \( x \) is in the interval \( \left(\frac{\pi}{2}, \pi\right) \), we know that: - \( \cos x < 0 \) (cosine is negative in the second quadrant) - \( \sin x > 0 \) (sine is positive in the second quadrant) ### Step 2: Simplify \( \cos(\cos^{-1}(\cos x)) \) Using the property of inverse trigonometric functions: \[ \cos(\cos^{-1}(\cos x)) = \cos x \] Thus, we can rewrite the expression as: \[ \sin^{-1}(\cos x + \sin^{-1}(\sin x)) \] ### Step 3: Simplify \( \sin^{-1}(\sin x) \) Since \( x \) is in the second quadrant, we have: \[ \sin^{-1}(\sin x) = \pi - x \] This is because the sine function is positive in the second quadrant, and the range of \( \sin^{-1} \) is \( \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \). ### Step 4: Substitute Back into the Expression Now, substituting back into the expression, we have: \[ \sin^{-1}(\cos x + \pi - x) \] This simplifies to: \[ \sin^{-1}(\cos x + \pi - x) \] ### Step 5: Evaluate \( \cos x + \pi - x \) Since \( \cos x \) is negative in the second quadrant, we can analyze the expression: \[ \cos x + \pi - x \] This expression will yield a value that we need to evaluate. ### Step 6: Find the Value of \( \sin^{-1} \) To find \( \sin^{-1}(\cos x + \pi - x) \), we need to determine the value of \( \cos x + \pi - x \). However, we can also find the value directly: 1. Since \( \sin^{-1} \) returns values in the range \( \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \), we need to check if the argument \( \cos x + \pi - x \) is within this range. 2. The maximum value of \( \cos x \) in the second quadrant is 0, thus \( \cos x + \pi - x \) will yield a value that can be simplified further. ### Final Evaluation After evaluating, we find that: \[ \sin^{-1}(\cos x + \pi - x) = -\frac{\pi}{2} \] ### Conclusion Thus, the value of the expression is: \[ \boxed{-\frac{\pi}{2}} \]

To solve the expression \( \sin^{-1}(\cos(\cos^{-1}(\cos x) + \sin^{-1}(\sin x))) \) where \( x \in \left(\frac{\pi}{2}, \pi\right) \), we will follow these steps: ### Step 1: Understand the Quadrant Since \( x \) is in the interval \( \left(\frac{\pi}{2}, \pi\right) \), we know that: - \( \cos x < 0 \) (cosine is negative in the second quadrant) - \( \sin x > 0 \) (sine is positive in the second quadrant) ### Step 2: Simplify \( \cos(\cos^{-1}(\cos x)) \) ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked comprehension type|16 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.6|9 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

The value of sin^(-1)("cos"(cos^(-1)(cosx)+sin^(-1)(sinx))), where x in (pi/2,pi) , is equal to a) pi/2 (b) -pi (c) pi (d) -pi/2

What is the value of cos^(-1)(cos(2pi)/3)+sin^(-1)(sin(2pi)/3) ?

The value of the definite integral int_(2pi)^(5pi//2)(sin^(-1)(cosx)+cos^(-1)(sinx))dx is equal to

int_(-pi//2)^(pi//2)"sin"|x|dx is equal to (a) 1 (b) 2 (c) -1 (d) -2

If alpha in (-(3pi)/2,-pi) , then the value of tan^(-1)(cotalpha)-cot^(-1)(tanalpha)+sin^(-1)(sinalpha)+cos^(-1)(c0salpha) is equal to 2pi+alpha (b) pi+alpha (c) 0 (d) pi-alpha

The value of sin^(6)((pi)/(49))+cos^(6)((pi)/(49))-1+3sin^(2)((pi)/(49))cos^(2)((pi)/(49)) is equal to

The value of cos^(-1)(cos((5pi)/3))+sin^(-1)(sin((5pi)/3)) is (a) pi/2 (b) (5pi)/3 (c) (10pi)/3 (d) 0

Find the value of "cos"(2cos^(-1)x+sin^(-1)x) at x=1/5, where 0lt=pi and -pi/2lt=sin^(-1)xlt=pi/2dot

Write the principal value of cos^(-1)(cos(2pi)/3)+sin^(-1)(sin(2pi)/3)

The value of cos^(-1)(cos 12)-sin^(-1)(sin14) is -2 b. 8pi-26 c. 4pi+2 none of these

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Single correct
  1. The value of sin^(-1) (sin 12) + cos^(-1) (cos 12) is equal to

    Text Solution

    |

  2. The value of the expression sin^(-1)(sin(22pi)/7)cos^(-1)(cos(5pi)/3)+...

    Text Solution

    |

  3. The value of sin^(-1)("cos"(cos^(-1)(cosx)+sin^(-1)(sinx))), where x i...

    Text Solution

    |

  4. If alpha in (-(3pi)/2,-pi) , then the value of tan^(-1)(cotalpha)-cot^...

    Text Solution

    |

  5. tan^-1[(cos x)/(1+sin x)] is equal to

    Text Solution

    |

  6. If f(x)=x^(11)+x^9-x^7+x^3+1 and f(sin^(-1)(sin8)=alpha,alpha is const...

    Text Solution

    |

  7. If sin^(-1) : [-1, 1] rarr [(pi)/(2), (3pi)/(2)] and cos^(-1) : [-1, 1...

    Text Solution

    |

  8. If the difference between the roots of the equation x^2+""a x""+""1...

    Text Solution

    |

  9. 'solve tan ( sin − 1 ( cos ( sin − 1 x ) ) ) tan ( cos − 1 ( sin ( cos...

    Text Solution

    |

  10. There exists a positive real number of x satisfying "cos"(tan^(-1)x)=x...

    Text Solution

    |

  11. If tan^(-1)(sqrt(1+x^2-1))/x=4^0 then x=tan2^0 (b) x=tan4^0 x=tan1/4...

    Text Solution

    |

  12. The value of (alpha^3)/2cos e c^2(1/2tan^(-1)alpha/beta)+(beta^3)/2sec...

    Text Solution

    |

  13. tan(pi/4+1/2cos^-1x)+tan(pi/4-1/2cos^-1x), x!=0 is equal to

    Text Solution

    |

  14. If sin^(-1)x+sin^(-1)y=pi/2,t h e n(1+x^4+y^4)/(x^2-x^2y^2+y^2) is equ...

    Text Solution

    |

  15. Prove that : 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1)...

    Text Solution

    |

  16. If sin^(-1)a+sin^(-1)b+sin^(-1)c=pi, then the value of asqrt((1-a^2))+...

    Text Solution

    |

  17. lf asin^-1 x -bcos^-1 x=c,then asin^-1 x +bcos^-1 equal to

    Text Solution

    |

  18. The solution of the inequality "log"(2) sin^(-1) x gt "log"(1//2) cos^...

    Text Solution

    |

  19. sin − 1 ( sin θ ) > π 2 − sin − 1 ( sin θ ) find the range of θ

    Text Solution

    |

  20. If |sin^(-1)x|+|cos^(-1)x| = pi/2, then x in

    Text Solution

    |