Home
Class 12
MATHS
If alpha in (-(3pi)/2,-pi) , then the va...

If `alpha in (-(3pi)/2,-pi)` , then the value of `tan^(-1)(cotalpha)-cot^(-1)(tanalpha)+sin^(-1)(sinalpha)+cos^(-1)(c0salpha)` is equal to `2pi+alpha` (b) `pi+alpha` (c) 0 (d) `pi-alpha`

A

`2 pi + alpha`

B

`pi + alpha`

C

`0`

D

`pi - alpha`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \tan^{-1}(\cot \alpha) - \cot^{-1}(\tan \alpha) + \sin^{-1}(\sin \alpha) + \cos^{-1}(\cos \alpha) \] given that \(\alpha \in \left(-\frac{3\pi}{2}, -\pi\right)\). ### Step 1: Evaluate \(\tan^{-1}(\cot \alpha)\) Using the identity \(\cot \alpha = \frac{1}{\tan \alpha}\), we have: \[ \tan^{-1}(\cot \alpha) = \tan^{-1}\left(\frac{1}{\tan \alpha}\right) \] This can be simplified using the identity \(\tan^{-1}(x) + \cot^{-1}(x) = \frac{\pi}{2}\): \[ \tan^{-1}(\cot \alpha) = \frac{\pi}{2} - \tan^{-1}(\tan \alpha) \] ### Step 2: Evaluate \(-\cot^{-1}(\tan \alpha)\) Using the identity \(\cot^{-1}(x) = \frac{\pi}{2} - \tan^{-1}(x)\): \[ -\cot^{-1}(\tan \alpha) = -\left(\frac{\pi}{2} - \tan^{-1}(\tan \alpha)\right) = -\frac{\pi}{2} + \tan^{-1}(\tan \alpha) \] ### Step 3: Combine the results from Steps 1 and 2 Now, we combine the results from Steps 1 and 2: \[ \tan^{-1}(\cot \alpha) - \cot^{-1}(\tan \alpha) = \left(\frac{\pi}{2} - \tan^{-1}(\tan \alpha)\right) + \left(-\frac{\pi}{2} + \tan^{-1}(\tan \alpha)\right) \] This simplifies to: \[ 0 \] ### Step 4: Evaluate \(\sin^{-1}(\sin \alpha) + \cos^{-1}(\cos \alpha)\) For \(\alpha \in \left(-\frac{3\pi}{2}, -\pi\right)\), \(\alpha\) is in the third quadrant. The identities for sine and cosine give us: \[ \sin^{-1}(\sin \alpha) + \cos^{-1}(\cos \alpha) = \pi \] ### Step 5: Combine all parts Now we combine the results from Steps 3 and 4: \[ 0 + \pi = \pi \] ### Conclusion Thus, the final value of the expression is: \[ \pi \] The answer is \( \pi + \alpha \) (option b). ---

To solve the problem, we need to evaluate the expression: \[ \tan^{-1}(\cot \alpha) - \cot^{-1}(\tan \alpha) + \sin^{-1}(\sin \alpha) + \cos^{-1}(\cos \alpha) \] given that \(\alpha \in \left(-\frac{3\pi}{2}, -\pi\right)\). ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked comprehension type|16 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.6|9 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

If alpha in (-(3pi)/2,-pi) , then the value of tan^(-1)(cotalpha)-cot^(-1)(tanalpha)+sin^(-1)(sinalpha)+cos^(-1)(cosalpha) is equal to (a) 2pi+alpha (b) pi+alpha (c) 0 (d) pi-alpha

If alpha in (-(pi)/(2), 0) , then find the value of tan^(-1) (cot alpha) - cot^(-1) (tan alpha)

(1)/(sin3alpha)[sin^(3)alpha+sin^(3)((2pi)/(3)+alpha)+sin^(3)((4pi)/(3)+alpha)] is equal to

If alpha=cos ((2pi)/5)+isin((2pi)/5) , then find the value of alpha+alpha^2+alpha^3+alpha^4

The expression 3[sin^4(3/2pi-alpha)+sin^4(3pi+alpha)]-2[sin^6(1/2pi+alpha)+sin^6(5pi-alpha)] is equal to

The expression 3[sin^4(3/2pi-alpha)+sin^4(3pi+alpha)]-2[sin^6(1/2pi+alpha)+sin^6(5pi-alpha)] is equal to

The value of (sin(pi-alpha))/(sin alpha-cos alpha tan.(alpha)/(2))-cos alpha is

If pi lt alpha lt (3pi)/2 then find the value of expression sqrt(4 sin^4 alpha+ sin^2 2alpha)+ 4 cos^2(pi/4- alpha/2)

(sqrt2-sinalpha-cosalpha)/(sinalpha-cosalpha) is equal to (a) sec(alpha/2-pi/8) (b) cos(pi/8-alpha/2) (c) tan(alpha/2-pi/8) (d) cot(alpha/2-pi/2)

If u=cot^(-1)sqrt(tanalpha)-tan^(-1)sqrt(tanalpha),t h e n tan(pi/4- u/2) is (a) sqrt(tanalpha) (b) sqrt(cotalpha) (c) tanalpha (d) cot alpha

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Single correct
  1. The value of the expression sin^(-1)(sin(22pi)/7)cos^(-1)(cos(5pi)/3)+...

    Text Solution

    |

  2. The value of sin^(-1)("cos"(cos^(-1)(cosx)+sin^(-1)(sinx))), where x i...

    Text Solution

    |

  3. If alpha in (-(3pi)/2,-pi) , then the value of tan^(-1)(cotalpha)-cot^...

    Text Solution

    |

  4. tan^-1[(cos x)/(1+sin x)] is equal to

    Text Solution

    |

  5. If f(x)=x^(11)+x^9-x^7+x^3+1 and f(sin^(-1)(sin8)=alpha,alpha is const...

    Text Solution

    |

  6. If sin^(-1) : [-1, 1] rarr [(pi)/(2), (3pi)/(2)] and cos^(-1) : [-1, 1...

    Text Solution

    |

  7. If the difference between the roots of the equation x^2+""a x""+""1...

    Text Solution

    |

  8. 'solve tan ( sin − 1 ( cos ( sin − 1 x ) ) ) tan ( cos − 1 ( sin ( cos...

    Text Solution

    |

  9. There exists a positive real number of x satisfying "cos"(tan^(-1)x)=x...

    Text Solution

    |

  10. If tan^(-1)(sqrt(1+x^2-1))/x=4^0 then x=tan2^0 (b) x=tan4^0 x=tan1/4...

    Text Solution

    |

  11. The value of (alpha^3)/2cos e c^2(1/2tan^(-1)alpha/beta)+(beta^3)/2sec...

    Text Solution

    |

  12. tan(pi/4+1/2cos^-1x)+tan(pi/4-1/2cos^-1x), x!=0 is equal to

    Text Solution

    |

  13. If sin^(-1)x+sin^(-1)y=pi/2,t h e n(1+x^4+y^4)/(x^2-x^2y^2+y^2) is equ...

    Text Solution

    |

  14. Prove that : 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1)...

    Text Solution

    |

  15. If sin^(-1)a+sin^(-1)b+sin^(-1)c=pi, then the value of asqrt((1-a^2))+...

    Text Solution

    |

  16. lf asin^-1 x -bcos^-1 x=c,then asin^-1 x +bcos^-1 equal to

    Text Solution

    |

  17. The solution of the inequality "log"(2) sin^(-1) x gt "log"(1//2) cos^...

    Text Solution

    |

  18. sin − 1 ( sin θ ) > π 2 − sin − 1 ( sin θ ) find the range of θ

    Text Solution

    |

  19. If |sin^(-1)x|+|cos^(-1)x| = pi/2, then x in

    Text Solution

    |

  20. If (sin^(-1) x)^(2) - (cos^(-1) x)^(2) = a pi^(2) then find the range ...

    Text Solution

    |