Home
Class 12
MATHS
'solve tan ( sin − 1 ( cos ( sin − 1 x )...

'solve tan ( sin − 1 ( cos ( sin − 1 x ) ) ) tan ( cos − 1 ( sin ( cos − 1 x ) ) ) '

A

0

B

1

C

`-1`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \tan\left(\sin^{-1}(\cos(\sin^{-1}(x)))\right) \tan\left(\cos^{-1}(\sin(\cos^{-1}(x)))\right), \] we will break it down step by step. ### Step 1: Simplify \(\sin^{-1}(\cos(\sin^{-1}(x)))\) Let \(y = \sin^{-1}(x)\). Then, by definition, \(\sin(y) = x\). Using the Pythagorean identity, we can find \(\cos(y)\): \[ \cos(y) = \sqrt{1 - \sin^2(y)} = \sqrt{1 - x^2}. \] Thus, we have: \[ \sin^{-1}(\cos(\sin^{-1}(x))) = \sin^{-1}(\sqrt{1 - x^2}). \] ### Step 2: Simplify \(\tan(\sin^{-1}(\sqrt{1 - x^2}))\) Using the definition of tangent in terms of sine and cosine, we have: \[ \tan(\sin^{-1}(a)) = \frac{a}{\sqrt{1 - a^2}}. \] So, \[ \tan(\sin^{-1}(\sqrt{1 - x^2})) = \frac{\sqrt{1 - x^2}}{\sqrt{1 - (1 - x^2)}} = \frac{\sqrt{1 - x^2}}{\sqrt{x^2}} = \frac{\sqrt{1 - x^2}}{x}. \] ### Step 3: Simplify \(\cos^{-1}(\sin(\cos^{-1}(x)))\) Let \(z = \cos^{-1}(x)\). Then, by definition, \(\cos(z) = x\). Using the Pythagorean identity, we can find \(\sin(z)\): \[ \sin(z) = \sqrt{1 - \cos^2(z)} = \sqrt{1 - x^2}. \] Thus, we have: \[ \cos^{-1}(\sin(\cos^{-1}(x))) = \cos^{-1}(\sqrt{1 - x^2}). \] ### Step 4: Simplify \(\tan(\cos^{-1}(\sqrt{1 - x^2}))\) Using the definition of tangent in terms of sine and cosine again, we have: \[ \tan(\cos^{-1}(a)) = \frac{\sqrt{1 - a^2}}{a}. \] So, \[ \tan(\cos^{-1}(\sqrt{1 - x^2})) = \frac{\sqrt{1 - (1 - x^2)}}{\sqrt{1 - x^2}} = \frac{x}{\sqrt{1 - x^2}}. \] ### Step 5: Combine the results Now we can combine the two results: \[ \tan\left(\sin^{-1}(\cos(\sin^{-1}(x)))\right) \tan\left(\cos^{-1}(\sin(\cos^{-1}(x)))\right) = \left(\frac{\sqrt{1 - x^2}}{x}\right) \left(\frac{x}{\sqrt{1 - x^2}}\right). \] ### Step 6: Simplify the expression The expression simplifies to: \[ \frac{\sqrt{1 - x^2}}{x} \cdot \frac{x}{\sqrt{1 - x^2}} = 1. \] ### Conclusion Thus, the final result is: \[ \boxed{1}. \]

To solve the expression \[ \tan\left(\sin^{-1}(\cos(\sin^{-1}(x)))\right) \tan\left(\cos^{-1}(\sin(\cos^{-1}(x)))\right), \] we will break it down step by step. ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked comprehension type|16 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.6|9 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

The value of "tan"(sin^(-1)("cos"(sin^(-1)x)))"tan"(cos^(-1)(sin(cos^(-1)x))),w h e r ex in (0,1), is equal to (a) 0 (b) 1 (c) -1 (d) none of these

y=tan^(-1)(cos x/(1+sin x))

Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))

Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))

tan^(-1) ((1-cos x)/(sin x))

The value of cos(sin −1 (tan(cos −1 (sin(tan −1 ( 4/3 ​ ))))))

Solve : tan(cos^(-1) x) = sin (tan^(-1) 2)

If alpha = sin^(-1) (cos(sin^-1) x)) and beta = cos^(-1) (sin (cos^(-1) x)) , then find tan alpha. tan beta.

sin^-1(cos x)+tan ^-1(cot x)

If x in (0,1) and f(x)=sec{tan^(-1)((sin(cos^(-1)x)+cos(sin^(-1)x))/(cos(cos^(-1)x)+sin(sin^(-1)x)))} , then sum_(r=2)^(10)f(1/r) is _______ .

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Single correct
  1. If sin^(-1) : [-1, 1] rarr [(pi)/(2), (3pi)/(2)] and cos^(-1) : [-1, 1...

    Text Solution

    |

  2. If the difference between the roots of the equation x^2+""a x""+""1...

    Text Solution

    |

  3. 'solve tan ( sin − 1 ( cos ( sin − 1 x ) ) ) tan ( cos − 1 ( sin ( cos...

    Text Solution

    |

  4. There exists a positive real number of x satisfying "cos"(tan^(-1)x)=x...

    Text Solution

    |

  5. If tan^(-1)(sqrt(1+x^2-1))/x=4^0 then x=tan2^0 (b) x=tan4^0 x=tan1/4...

    Text Solution

    |

  6. The value of (alpha^3)/2cos e c^2(1/2tan^(-1)alpha/beta)+(beta^3)/2sec...

    Text Solution

    |

  7. tan(pi/4+1/2cos^-1x)+tan(pi/4-1/2cos^-1x), x!=0 is equal to

    Text Solution

    |

  8. If sin^(-1)x+sin^(-1)y=pi/2,t h e n(1+x^4+y^4)/(x^2-x^2y^2+y^2) is equ...

    Text Solution

    |

  9. Prove that : 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1)...

    Text Solution

    |

  10. If sin^(-1)a+sin^(-1)b+sin^(-1)c=pi, then the value of asqrt((1-a^2))+...

    Text Solution

    |

  11. lf asin^-1 x -bcos^-1 x=c,then asin^-1 x +bcos^-1 equal to

    Text Solution

    |

  12. The solution of the inequality "log"(2) sin^(-1) x gt "log"(1//2) cos^...

    Text Solution

    |

  13. sin − 1 ( sin θ ) > π 2 − sin − 1 ( sin θ ) find the range of θ

    Text Solution

    |

  14. If |sin^(-1)x|+|cos^(-1)x| = pi/2, then x in

    Text Solution

    |

  15. If (sin^(-1) x)^(2) - (cos^(-1) x)^(2) = a pi^(2) then find the range ...

    Text Solution

    |

  16. The number of integer x satisfying sin^(-1)|x-2|+cos^(-1)(1-|3-x|)=pi/...

    Text Solution

    |

  17. The number of solutions of the equation cos^(-1)((1+x^2)/(2x))-cos^(-1...

    Text Solution

    |

  18. f(x)=tan^(-1)x+tan^(-1)(1/x);g(x)=sin^(-1)x+cos^(-1)x are identical fu...

    Text Solution

    |

  19. The value of a for which a x^2+sin^(-1)(x^2-2x+2)+cos^(-1)(x^2-2x+2)=1...

    Text Solution

    |

  20. If sin^(-1)(5/x)+sin^(-1)((12)/x)=pi/2, then x is equal to 7/(13) (b)...

    Text Solution

    |