Home
Class 12
MATHS
The value of (alpha^3)/2cos e c^2(1/2tan...

The value of `(alpha^3)/2cos e c^2(1/2tan^(-1)alpha/beta)+(beta^3)/2sec^2(1/2tan^(-1)(beta/alpha))i se q u a lto` `(alpha+beta)(alpha^2+beta^2)` (b) `(alpha+beta)(alpha^2-beta^2)` `(alpha+beta)(alpha^2+beta^2)` (d) none of these

A

`(alpha - beta) (alpha^(2) + beta^(2))`

B

`(alpha + beta) (alpha^(2) - beta^(2))`

C

`(alpha + beta) (alpha^(2) + beta^(2))`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, let's break it down systematically. ### Given Expression: We need to evaluate: \[ \frac{\alpha^3}{2 \cos \sec^2\left(\frac{1}{2} \tan^{-1}\left(\frac{\alpha}{\beta}\right)\right)} + \frac{\beta^3}{2 \sec^2\left(\frac{1}{2} \tan^{-1}\left(\frac{\beta}{\alpha}\right)\right)} \] ### Step 1: Rewrite the trigonometric functions We know that: \[ \sec^2(x) = \frac{1}{\cos^2(x)} \] Thus, we can rewrite the expression as: \[ \frac{\alpha^3}{2 \cdot \frac{1}{\cos^2\left(\frac{1}{2} \tan^{-1}\left(\frac{\alpha}{\beta}\right)\right)}} + \frac{\beta^3}{2 \cdot \frac{1}{\cos^2\left(\frac{1}{2} \tan^{-1}\left(\frac{\beta}{\alpha}\right)\right)}} \] This simplifies to: \[ \frac{\alpha^3 \cos^2\left(\frac{1}{2} \tan^{-1}\left(\frac{\alpha}{\beta}\right)\right)}{2} + \frac{\beta^3 \cos^2\left(\frac{1}{2} \tan^{-1}\left(\frac{\beta}{\alpha}\right)\right)}{2} \] ### Step 2: Use the half-angle identity Using the half-angle identity, we know: \[ \cos^2\left(\frac{1}{2} \tan^{-1}(x)\right) = \frac{1}{1 + x^2} \] Thus, we can express: \[ \cos^2\left(\frac{1}{2} \tan^{-1}\left(\frac{\alpha}{\beta}\right)\right) = \frac{1}{1 + \left(\frac{\alpha}{\beta}\right)^2} = \frac{\beta^2}{\alpha^2 + \beta^2} \] and similarly, \[ \cos^2\left(\frac{1}{2} \tan^{-1}\left(\frac{\beta}{\alpha}\right)\right) = \frac{\alpha^2}{\alpha^2 + \beta^2} \] ### Step 3: Substitute back into the expression Substituting back into our expression gives: \[ \frac{\alpha^3 \cdot \frac{\beta^2}{\alpha^2 + \beta^2}}{2} + \frac{\beta^3 \cdot \frac{\alpha^2}{\alpha^2 + \beta^2}}{2} \] This simplifies to: \[ \frac{\alpha^3 \beta^2 + \beta^3 \alpha^2}{2(\alpha^2 + \beta^2)} \] ### Step 4: Factor the numerator Notice that: \[ \alpha^3 \beta^2 + \beta^3 \alpha^2 = \alpha^2 \beta^2 (\alpha + \beta) \] Thus, we can rewrite our expression as: \[ \frac{\alpha^2 \beta^2 (\alpha + \beta)}{2(\alpha^2 + \beta^2)} \] ### Step 5: Final expression Now we have: \[ \frac{(\alpha + \beta)(\alpha^2 \beta^2)}{2(\alpha^2 + \beta^2)} \] ### Conclusion The expression simplifies to: \[ \frac{(\alpha + \beta)(\alpha^2 + \beta^2)}{2} \] Thus, the correct option is: \[ \text{(a) } (\alpha + \beta)(\alpha^2 + \beta^2) \]

To solve the given problem step by step, let's break it down systematically. ### Given Expression: We need to evaluate: \[ \frac{\alpha^3}{2 \cos \sec^2\left(\frac{1}{2} \tan^{-1}\left(\frac{\alpha}{\beta}\right)\right)} + \frac{\beta^3}{2 \sec^2\left(\frac{1}{2} \tan^{-1}\left(\frac{\beta}{\alpha}\right)\right)} \] ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked comprehension type|16 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.6|9 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Single correct
  1. There exists a positive real number of x satisfying "cos"(tan^(-1)x)=x...

    Text Solution

    |

  2. If tan^(-1)(sqrt(1+x^2-1))/x=4^0 then x=tan2^0 (b) x=tan4^0 x=tan1/4...

    Text Solution

    |

  3. The value of (alpha^3)/2cos e c^2(1/2tan^(-1)alpha/beta)+(beta^3)/2sec...

    Text Solution

    |

  4. tan(pi/4+1/2cos^-1x)+tan(pi/4-1/2cos^-1x), x!=0 is equal to

    Text Solution

    |

  5. If sin^(-1)x+sin^(-1)y=pi/2,t h e n(1+x^4+y^4)/(x^2-x^2y^2+y^2) is equ...

    Text Solution

    |

  6. Prove that : 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1)...

    Text Solution

    |

  7. If sin^(-1)a+sin^(-1)b+sin^(-1)c=pi, then the value of asqrt((1-a^2))+...

    Text Solution

    |

  8. lf asin^-1 x -bcos^-1 x=c,then asin^-1 x +bcos^-1 equal to

    Text Solution

    |

  9. The solution of the inequality "log"(2) sin^(-1) x gt "log"(1//2) cos^...

    Text Solution

    |

  10. sin − 1 ( sin θ ) > π 2 − sin − 1 ( sin θ ) find the range of θ

    Text Solution

    |

  11. If |sin^(-1)x|+|cos^(-1)x| = pi/2, then x in

    Text Solution

    |

  12. If (sin^(-1) x)^(2) - (cos^(-1) x)^(2) = a pi^(2) then find the range ...

    Text Solution

    |

  13. The number of integer x satisfying sin^(-1)|x-2|+cos^(-1)(1-|3-x|)=pi/...

    Text Solution

    |

  14. The number of solutions of the equation cos^(-1)((1+x^2)/(2x))-cos^(-1...

    Text Solution

    |

  15. f(x)=tan^(-1)x+tan^(-1)(1/x);g(x)=sin^(-1)x+cos^(-1)x are identical fu...

    Text Solution

    |

  16. The value of a for which a x^2+sin^(-1)(x^2-2x+2)+cos^(-1)(x^2-2x+2)=1...

    Text Solution

    |

  17. If sin^(-1)(5/x)+sin^(-1)((12)/x)=pi/2, then x is equal to 7/(13) (b)...

    Text Solution

    |

  18. if cos^(- 1)sqrt(p)+cos^(- 1)sqrt(1-p)+cos^(- 1)sqrt(1-q)=(3pi)/4 ,the...

    Text Solution

    |

  19. If tan^(-1)(sin^2theta-2sintheta+3)+cot^(-1)(5^sec^(2y)+1)=pi/2, then ...

    Text Solution

    |

  20. The product of all values of x satisfying the equation sin^(-1)cos((2x...

    Text Solution

    |