Home
Class 12
MATHS
tan(pi/4+1/2cos^-1x)+tan(pi/4-1/2cos^-1x...

`tan(pi/4+1/2cos^-1x)+tan(pi/4-1/2cos^-1x)`, `x!=0` is equal to

A

`x`

B

`2x`

C

`(2)/(x)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \tan\left(\frac{\pi}{4} + \frac{1}{2} \cos^{-1} x\right) + \tan\left(\frac{\pi}{4} - \frac{1}{2} \cos^{-1} x\right) \), we can follow these steps: ### Step 1: Use the tangent addition and subtraction formulas We know that: \[ \tan(a + b) = \frac{\tan a + \tan b}{1 - \tan a \tan b} \] and \[ \tan(a - b) = \frac{\tan a - \tan b}{1 + \tan a \tan b} \] Let \( a = \frac{\pi}{4} \) and \( b = \frac{1}{2} \cos^{-1} x \). ### Step 2: Calculate \( \tan\left(\frac{\pi}{4}\right) \) Since \( \tan\left(\frac{\pi}{4}\right) = 1 \), we can substitute this into our formulas: \[ \tan\left(\frac{\pi}{4} + b\right) = \frac{1 + \tan b}{1 - \tan b} \] \[ \tan\left(\frac{\pi}{4} - b\right) = \frac{1 - \tan b}{1 + \tan b} \] ### Step 3: Substitute \( b = \frac{1}{2} \cos^{-1} x \) Now, we substitute \( b \): \[ \tan\left(\frac{\pi}{4} + \frac{1}{2} \cos^{-1} x\right) = \frac{1 + \tan\left(\frac{1}{2} \cos^{-1} x\right)}{1 - \tan\left(\frac{1}{2} \cos^{-1} x\right)} \] \[ \tan\left(\frac{\pi}{4} - \frac{1}{2} \cos^{-1} x\right) = \frac{1 - \tan\left(\frac{1}{2} \cos^{-1} x\right)}{1 + \tan\left(\frac{1}{2} \cos^{-1} x\right)} \] ### Step 4: Add the two tangent expressions Now, we add the two expressions: \[ \tan\left(\frac{\pi}{4} + \frac{1}{2} \cos^{-1} x\right) + \tan\left(\frac{\pi}{4} - \frac{1}{2} \cos^{-1} x\right) = \frac{(1 + \tan b)(1 + \tan b) + (1 - \tan b)(1 - \tan b)}{(1 - \tan b)(1 + \tan b)} \] ### Step 5: Simplify the numerator The numerator simplifies to: \[ (1 + \tan b)^2 + (1 - \tan b)^2 = 1 + 2\tan b + \tan^2 b + 1 - 2\tan b + \tan^2 b = 2 + 2\tan^2 b \] So, we have: \[ \frac{2 + 2\tan^2 b}{1 - \tan^2 b} \] ### Step 6: Factor out the common terms Factoring out the common terms gives: \[ \frac{2(1 + \tan^2 b)}{1 - \tan^2 b} \] ### Step 7: Use the identity for tangent Using the identity \( 1 + \tan^2 b = \sec^2 b \): \[ \frac{2 \sec^2 b}{1 - \tan^2 b} \] ### Step 8: Substitute \( b = \frac{1}{2} \cos^{-1} x \) Now, substituting back \( b = \frac{1}{2} \cos^{-1} x \): \[ \sec^2\left(\frac{1}{2} \cos^{-1} x\right) = \frac{1}{\cos^2\left(\frac{1}{2} \cos^{-1} x\right)} \] ### Step 9: Final simplification Using the double angle identity: \[ \cos\left(\cos^{-1} x\right) = x \implies \cos^2\left(\frac{1}{2} \cos^{-1} x\right) = \frac{1 + x}{2} \] Thus, we have: \[ \sec^2\left(\frac{1}{2} \cos^{-1} x\right) = \frac{4}{1 + x} \] Finally, substituting this back into our expression gives: \[ \frac{2 \cdot \frac{4}{1 + x}}{1 - \frac{1 - x}{1 + x}} = \frac{8}{1 + x} \cdot \frac{2x}{2} = \frac{8}{x} \] ### Final Answer Thus, the expression simplifies to: \[ \frac{2}{x} \]

To solve the expression \( \tan\left(\frac{\pi}{4} + \frac{1}{2} \cos^{-1} x\right) + \tan\left(\frac{\pi}{4} - \frac{1}{2} \cos^{-1} x\right) \), we can follow these steps: ### Step 1: Use the tangent addition and subtraction formulas We know that: \[ \tan(a + b) = \frac{\tan a + \tan b}{1 - \tan a \tan b} \] and ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked comprehension type|16 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.6|9 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

tan(pi/4+1/2cos^(-1)x)+tan(pi/4-1/2cos^(-1)x),x!=0, is equal to x (b) 2x (c) 2/x (d) none of these

Prove that tan(pi/4+1/2 cos^-1(a/b))+tan(pi/4-1/2 cos^-1(a/b))=(2b)/a

Prove that tan(pi/4+1/2 cos^-1(a/b))+tan(pi/4-1/2 cos^-1(a/b))=(2b)/a

cos(tan^(-1)3/4)+cos(tan^(-1)x) is equal to

Prove the following: tan[pi/4+1/2cos^(-1)(a/b)]+tan[pi/4-1/2cos^(-1)(a/b)]=(2b)/a

Prove the following: tan[pi/4+1/2cos^(-1)(a/b)]+tan[pi/4-1/2cos^(-1)(a/b)]=(2b)/a

If tan^(- 1)\ 1/4+tan^(- 1)\ 2/9=1/2cos^(- 1)x then x is equal to

If 4sin^(-1)x+cos^(-1)x=pi , then x is equal to

The value of tan^(-1)(1)+cos^(-1)(-1/2)+sin^(-1)(-1/2) is equal to pi/4 b. (5pi)/(12) c. (3pi)/4 d. (13pi)/(12)

cos[tan^(-1){tan((15pi)/4)}]

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Single correct
  1. If tan^(-1)(sqrt(1+x^2-1))/x=4^0 then x=tan2^0 (b) x=tan4^0 x=tan1/4...

    Text Solution

    |

  2. The value of (alpha^3)/2cos e c^2(1/2tan^(-1)alpha/beta)+(beta^3)/2sec...

    Text Solution

    |

  3. tan(pi/4+1/2cos^-1x)+tan(pi/4-1/2cos^-1x), x!=0 is equal to

    Text Solution

    |

  4. If sin^(-1)x+sin^(-1)y=pi/2,t h e n(1+x^4+y^4)/(x^2-x^2y^2+y^2) is equ...

    Text Solution

    |

  5. Prove that : 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1)...

    Text Solution

    |

  6. If sin^(-1)a+sin^(-1)b+sin^(-1)c=pi, then the value of asqrt((1-a^2))+...

    Text Solution

    |

  7. lf asin^-1 x -bcos^-1 x=c,then asin^-1 x +bcos^-1 equal to

    Text Solution

    |

  8. The solution of the inequality "log"(2) sin^(-1) x gt "log"(1//2) cos^...

    Text Solution

    |

  9. sin − 1 ( sin θ ) > π 2 − sin − 1 ( sin θ ) find the range of θ

    Text Solution

    |

  10. If |sin^(-1)x|+|cos^(-1)x| = pi/2, then x in

    Text Solution

    |

  11. If (sin^(-1) x)^(2) - (cos^(-1) x)^(2) = a pi^(2) then find the range ...

    Text Solution

    |

  12. The number of integer x satisfying sin^(-1)|x-2|+cos^(-1)(1-|3-x|)=pi/...

    Text Solution

    |

  13. The number of solutions of the equation cos^(-1)((1+x^2)/(2x))-cos^(-1...

    Text Solution

    |

  14. f(x)=tan^(-1)x+tan^(-1)(1/x);g(x)=sin^(-1)x+cos^(-1)x are identical fu...

    Text Solution

    |

  15. The value of a for which a x^2+sin^(-1)(x^2-2x+2)+cos^(-1)(x^2-2x+2)=1...

    Text Solution

    |

  16. If sin^(-1)(5/x)+sin^(-1)((12)/x)=pi/2, then x is equal to 7/(13) (b)...

    Text Solution

    |

  17. if cos^(- 1)sqrt(p)+cos^(- 1)sqrt(1-p)+cos^(- 1)sqrt(1-q)=(3pi)/4 ,the...

    Text Solution

    |

  18. If tan^(-1)(sin^2theta-2sintheta+3)+cot^(-1)(5^sec^(2y)+1)=pi/2, then ...

    Text Solution

    |

  19. The product of all values of x satisfying the equation sin^(-1)cos((2x...

    Text Solution

    |

  20. The exhaustive set of values of a for which a - cot^(-1) 3x = 2 tan^(-...

    Text Solution

    |