Home
Class 12
MATHS
If sin^(-1)x+sin^(-1)y=pi/2,t h e n(1+x^...

If `sin^(-1)x+sin^(-1)y=pi/2,t h e n(1+x^4+y^4)/(x^2-x^2y^2+y^2)` is equal to 1 (b) 2 (c) `1/2` (d) none of these

A

1

B

2

C

`(1)/(2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \sin^{-1} x + \sin^{-1} y = \frac{\pi}{2} \] ### Step 1: Rewrite the equation From the identity \( \sin^{-1} x + \cos^{-1} x = \frac{\pi}{2} \), we can deduce that: \[ \sin^{-1} x = \cos^{-1} y \] ### Step 2: Convert to sine terms Using the cosine inverse identity, we can express \( y \) in terms of \( x \): \[ x = \sin(\cos^{-1} y) = \sqrt{1 - y^2} \] ### Step 3: Square both sides Squaring both sides gives us: \[ x^2 = 1 - y^2 \] ### Step 4: Rearranging the equation Rearranging the equation results in: \[ x^2 + y^2 = 1 \] ### Step 5: Substitute into the expression Now we need to evaluate the expression: \[ \frac{1 + x^4 + y^4}{x^2 - x^2y^2 + y^2} \] ### Step 6: Simplify \( x^4 + y^4 \) Using the identity \( x^4 + y^4 = (x^2 + y^2)^2 - 2x^2y^2 \): \[ x^4 + y^4 = (1)^2 - 2x^2y^2 = 1 - 2x^2y^2 \] ### Step 7: Substitute back into the expression Now substituting back into the expression: \[ \frac{1 + (1 - 2x^2y^2)}{x^2 - x^2y^2 + y^2} = \frac{2 - 2x^2y^2}{x^2 - x^2y^2 + y^2} \] ### Step 8: Factor out the numerator Factoring out 2 from the numerator gives: \[ \frac{2(1 - x^2y^2)}{x^2 - x^2y^2 + y^2} \] ### Step 9: Simplify the denominator The denominator can be rewritten as: \[ x^2 - x^2y^2 + y^2 = (x^2 + y^2) - x^2y^2 = 1 - x^2y^2 \] ### Step 10: Final simplification Now substituting this back into our expression results in: \[ \frac{2(1 - x^2y^2)}{1 - x^2y^2} = 2 \] Thus, the final answer is: \[ \boxed{2} \]

To solve the problem, we start with the given equation: \[ \sin^{-1} x + \sin^{-1} y = \frac{\pi}{2} \] ### Step 1: Rewrite the equation From the identity \( \sin^{-1} x + \cos^{-1} x = \frac{\pi}{2} \), we can deduce that: ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked comprehension type|16 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.6|9 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi,t h e nx^4+y^2+z^4+4x^2y^2z^2=K(x^2y^2+y^2z^2+z^2x^2), where K is equal to 1 (b) 2 (c) 4 (d) none of these

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi,t h e nx^4+y^2+z^4+4x^2y^2z^2=K(x^2y^2+y^2z^2+z^2x^2), where K is equal to 1 (b) 2 (c) 4 (d) none of these

If y=(sin^(-1)x)^2,\ then (1-x^2)y_2 is equal to x y_1+2 (b) x y_1-2 (c) x y_1+2 (d) none of these

If y=(sin^(-1)x)^2+(cos^(-1)x)^2 , then (1-x^2) (d^2y)/(dx^2)-x(dy)/(dx) is equal to 4 (b) 3 (c) 1 (d) 0

If y=(sin^(-1)x)^2+(cos^(-1)x)^2 , then (1-x^2) (d^2y)/(dx^2)-x(dy)/(dx) is equal to 4 (b) 3 (c) 1 (d) 0

If y=sin(m\ sin^(-1)x) , then (1-x^2)y_2-x y_1 is equal to m^2y (b) m y (c) -m^2y (d) none of these

If y=(sin^(-1)x)/(sqrt(1-x^2)),t h e n((1-x^2)dy)/(dx) is equal to (a) x+y (b) 1+x y (c) 1-x y (d) x y-2

If x^2+y^2+z^2=r^2,t h e ntan^(-1)((x y)/(z r))+tan^(-1)((y z)/(x r))+tan^(-1)((x z)/(y r)) is equal to pi (b) pi/2 (c) 0 (d) none of these

If x^2+y^2+z^2=r^2,t h e ntan^(-1)((x y)/(z r))+tan^(-1)((y z)/(x r))+tan^(-1)((x z)/(y r)) is equal to pi (b) pi/2 (c) 0 (d) none of these

If x^2+y^2+z^2=r^2,t h e ntan^(-1)((x y)/(z r))+tan^(-1)((y z)/(x r))+tan^(-1)((x z)/(y r)) is equal to pi (b) pi/2 (c) 0 (d) none of these

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Single correct
  1. The value of (alpha^3)/2cos e c^2(1/2tan^(-1)alpha/beta)+(beta^3)/2sec...

    Text Solution

    |

  2. tan(pi/4+1/2cos^-1x)+tan(pi/4-1/2cos^-1x), x!=0 is equal to

    Text Solution

    |

  3. If sin^(-1)x+sin^(-1)y=pi/2,t h e n(1+x^4+y^4)/(x^2-x^2y^2+y^2) is equ...

    Text Solution

    |

  4. Prove that : 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1)...

    Text Solution

    |

  5. If sin^(-1)a+sin^(-1)b+sin^(-1)c=pi, then the value of asqrt((1-a^2))+...

    Text Solution

    |

  6. lf asin^-1 x -bcos^-1 x=c,then asin^-1 x +bcos^-1 equal to

    Text Solution

    |

  7. The solution of the inequality "log"(2) sin^(-1) x gt "log"(1//2) cos^...

    Text Solution

    |

  8. sin − 1 ( sin θ ) > π 2 − sin − 1 ( sin θ ) find the range of θ

    Text Solution

    |

  9. If |sin^(-1)x|+|cos^(-1)x| = pi/2, then x in

    Text Solution

    |

  10. If (sin^(-1) x)^(2) - (cos^(-1) x)^(2) = a pi^(2) then find the range ...

    Text Solution

    |

  11. The number of integer x satisfying sin^(-1)|x-2|+cos^(-1)(1-|3-x|)=pi/...

    Text Solution

    |

  12. The number of solutions of the equation cos^(-1)((1+x^2)/(2x))-cos^(-1...

    Text Solution

    |

  13. f(x)=tan^(-1)x+tan^(-1)(1/x);g(x)=sin^(-1)x+cos^(-1)x are identical fu...

    Text Solution

    |

  14. The value of a for which a x^2+sin^(-1)(x^2-2x+2)+cos^(-1)(x^2-2x+2)=1...

    Text Solution

    |

  15. If sin^(-1)(5/x)+sin^(-1)((12)/x)=pi/2, then x is equal to 7/(13) (b)...

    Text Solution

    |

  16. if cos^(- 1)sqrt(p)+cos^(- 1)sqrt(1-p)+cos^(- 1)sqrt(1-q)=(3pi)/4 ,the...

    Text Solution

    |

  17. If tan^(-1)(sin^2theta-2sintheta+3)+cot^(-1)(5^sec^(2y)+1)=pi/2, then ...

    Text Solution

    |

  18. The product of all values of x satisfying the equation sin^(-1)cos((2x...

    Text Solution

    |

  19. The exhaustive set of values of a for which a - cot^(-1) 3x = 2 tan^(-...

    Text Solution

    |

  20. If u=cot^-1 sqrt(tanalpha)-tan^-1 sqrt(tan alpha), then tan(pi/4-u/2) ...

    Text Solution

    |