Home
Class 12
MATHS
If sin^(-1)a+sin^(-1)b+sin^(-1)c=pi, the...

If `sin^(-1)a+sin^(-1)b+sin^(-1)c=pi,` then the value of `asqrt((1-a^2))+bsqrt((1-b^2))+sqrt((1-c^2))` will be `2a b c` (b) `a b c` (c) `1/2a b c` (d) `1/3a b c`

A

`2 abc`

B

`abc`

C

`(1)/(2) abc`

D

`(1)/(3) abc`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \sin^{-1} a + \sin^{-1} b + \sin^{-1} c = \pi \] ### Step 1: Express the angles Let: \[ \sin^{-1} a = A, \quad \sin^{-1} b = B, \quad \sin^{-1} c = C \] Thus, we have: \[ A + B + C = \pi \] ### Step 2: Use the sine function From the definitions of inverse sine, we can express \(a\), \(b\), and \(c\) as: \[ a = \sin A, \quad b = \sin B, \quad c = \sin C \] ### Step 3: Recognize the triangle property Since \(A + B + C = \pi\), \(A\), \(B\), and \(C\) can be considered as the angles of a triangle. We can apply the sine rule for the angles of a triangle, which states: \[ \sin A + \sin B + \sin C = 4 \sin A \sin B \sin C \] ### Step 4: Substitute the sine values Using the sine values we defined: \[ \sin A = a, \quad \sin B = b, \quad \sin C = c \] We can rewrite the equation as: \[ a + b + c = 4abc \] ### Step 5: Find the required expression We need to evaluate: \[ a \sqrt{1 - a^2} + b \sqrt{1 - b^2} + c \sqrt{1 - c^2} \] Using the identity \(\sqrt{1 - \sin^2 x} = \cos x\), we can rewrite the expression as: \[ a \cos A + b \cos B + c \cos C \] ### Step 6: Express cosines in terms of sine We know: \[ \cos A = \sqrt{1 - a^2}, \quad \cos B = \sqrt{1 - b^2}, \quad \cos C = \sqrt{1 - c^2} \] Thus, we can express the required sum as: \[ a \sqrt{1 - a^2} + b \sqrt{1 - b^2} + c \sqrt{1 - c^2} = a \cos A + b \cos B + c \cos C \] ### Step 7: Use the triangle property From the triangle properties, we know: \[ \sin A \cos A + \sin B \cos B + \sin C \cos C = \frac{1}{2} \sin 2A + \frac{1}{2} \sin 2B + \frac{1}{2} \sin 2C \] This can be simplified using the sine of angles in a triangle. ### Step 8: Final result Using the earlier derived relation, we find: \[ a \sqrt{1 - a^2} + b \sqrt{1 - b^2} + c \sqrt{1 - c^2} = 2abc \] Thus, the value of \(a \sqrt{1 - a^2} + b \sqrt{1 - b^2} + c \sqrt{1 - c^2}\) is: \[ \boxed{2abc} \]

To solve the problem, we start with the given equation: \[ \sin^{-1} a + \sin^{-1} b + \sin^{-1} c = \pi \] ### Step 1: Express the angles Let: ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked comprehension type|16 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.6|9 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

If sin^(-1)a+sin^(-1)b+sin^(-1)c=pi, then the value of asqrt((1-a^2))+bsqrt((1-b^2))+csqrt((1-c^2)) will be (A) 2a b c (B) a b c (C) 1/2a b c (D) 1/3a b c

If sin^(-1)x-cos^(-1)x=pi/6 , then x= (a) 1/2 (b) (sqrt(3))/2 (c) -1/2 (d) none of these

If sin^(-1)((2a)/(1+a^2))+sin^(-1)((2b)/(1+b^2))=2tan^(-1)x , then x is equal to [a , b , in (0,1)] (a) (a-b)/(1+a b) (b) b/(1+a b) (c) b/(1+a b) (d) (a+b)/(1-a b)

If the value of the determinant |(a,1, 1) (1,b,1) (1,1,c)| is positive then a. a b c >1 b. a b c> -8 c. a b c -2

If in A B C ,A C is double of A B , then the value of (cot(A/2))(cot((B-C)/2)) is equal to 1/3 (b) -1/3 (c) 3 (d) 1/2

The value of sin(1/4sin^(-1)((sqrt(63))/8)) is (a) 1/(sqrt(2)) (b) 1/(sqrt(3)) (c) 1/(2sqrt(2)) (d) 1/(3sqrt(3))

If (sin^(-1) a)^(2) +( cos^(-1) b)^(2) + ( sec^(-1)c)^(2) + ( cosec^(-1) d)^(2) = ( 5pi^(2))/2 " , then the value of " ( sin^(-1)a)^(2) - ( cos^(-1)b) ^(2) + ( sec^(-1)c)^(2) - ( cosec^(-1)d)^(2)

If in A B C ,A C is double of A B , then the value of cot(A/2)cot((B-C)/2) is equal to 1/3 (b) -1/3 (c) 3 (d) 1/2

If int(xln(x+sqrt(1+x^2)))/(sqrt(1+x^2))dx =asqrt(1+x^2)ln(x+sqrt(1+x^2))+b x+c , then (A) a=1,b =-1 (B) a=1,b=1 (C) a=-1, b=1 (D) a=-1, b=-1

int(x^3)/(sqrt(1+x^2))\ dx=a(1+x^2)^(3setminus2)+bsqrt(1+x^2)+C , then (a) a=1/3,\ \ b=1 (b) a=-1/3,\ \ b=1 (c) a=-1/3,\ \ b=-1 (d) a=1/3,\ \ b=-1

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Single correct
  1. If sin^(-1)x+sin^(-1)y=pi/2,t h e n(1+x^4+y^4)/(x^2-x^2y^2+y^2) is equ...

    Text Solution

    |

  2. Prove that : 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1)...

    Text Solution

    |

  3. If sin^(-1)a+sin^(-1)b+sin^(-1)c=pi, then the value of asqrt((1-a^2))+...

    Text Solution

    |

  4. lf asin^-1 x -bcos^-1 x=c,then asin^-1 x +bcos^-1 equal to

    Text Solution

    |

  5. The solution of the inequality "log"(2) sin^(-1) x gt "log"(1//2) cos^...

    Text Solution

    |

  6. sin − 1 ( sin θ ) > π 2 − sin − 1 ( sin θ ) find the range of θ

    Text Solution

    |

  7. If |sin^(-1)x|+|cos^(-1)x| = pi/2, then x in

    Text Solution

    |

  8. If (sin^(-1) x)^(2) - (cos^(-1) x)^(2) = a pi^(2) then find the range ...

    Text Solution

    |

  9. The number of integer x satisfying sin^(-1)|x-2|+cos^(-1)(1-|3-x|)=pi/...

    Text Solution

    |

  10. The number of solutions of the equation cos^(-1)((1+x^2)/(2x))-cos^(-1...

    Text Solution

    |

  11. f(x)=tan^(-1)x+tan^(-1)(1/x);g(x)=sin^(-1)x+cos^(-1)x are identical fu...

    Text Solution

    |

  12. The value of a for which a x^2+sin^(-1)(x^2-2x+2)+cos^(-1)(x^2-2x+2)=1...

    Text Solution

    |

  13. If sin^(-1)(5/x)+sin^(-1)((12)/x)=pi/2, then x is equal to 7/(13) (b)...

    Text Solution

    |

  14. if cos^(- 1)sqrt(p)+cos^(- 1)sqrt(1-p)+cos^(- 1)sqrt(1-q)=(3pi)/4 ,the...

    Text Solution

    |

  15. If tan^(-1)(sin^2theta-2sintheta+3)+cot^(-1)(5^sec^(2y)+1)=pi/2, then ...

    Text Solution

    |

  16. The product of all values of x satisfying the equation sin^(-1)cos((2x...

    Text Solution

    |

  17. The exhaustive set of values of a for which a - cot^(-1) 3x = 2 tan^(-...

    Text Solution

    |

  18. If u=cot^-1 sqrt(tanalpha)-tan^-1 sqrt(tan alpha), then tan(pi/4-u/2) ...

    Text Solution

    |

  19. The solution set of the equation sin^(-1) sqrt(1 - x^(2)) + cos^(-1)...

    Text Solution

    |

  20. the value of cos^-1sqrt(2/3)-cos^-1 ((sqrt6+1)/(2sqrt3)) is equal to:

    Text Solution

    |