Home
Class 12
MATHS
lf asin^-1 x -bcos^-1 x=c,then asin^-1 x...

lf `asin^-1 x -bcos^-1 x=c,`then `asin^-1 x +bcos^-1` equal to

A

0

B

`(pi ab + c (b -a))/(a + b)`

C

`(pi)/(2)`

D

`(pi ab + c (a -b))/(a + b)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( a \sin^{-1} x - b \cos^{-1} x = c \) and find \( a \sin^{-1} x + b \cos^{-1} x \), we can follow these steps: ### Step 1: Write down the given equation We start with the equation: \[ a \sin^{-1} x - b \cos^{-1} x = c \] ### Step 2: Use the identity for inverse trigonometric functions We know that: \[ \sin^{-1} x + \cos^{-1} x = \frac{\pi}{2} \] From this, we can express \( \cos^{-1} x \) in terms of \( \sin^{-1} x \): \[ \cos^{-1} x = \frac{\pi}{2} - \sin^{-1} x \] ### Step 3: Substitute \( \cos^{-1} x \) in the original equation Substituting this into the original equation gives: \[ a \sin^{-1} x - b \left( \frac{\pi}{2} - \sin^{-1} x \right) = c \] Expanding this, we have: \[ a \sin^{-1} x - \frac{b\pi}{2} + b \sin^{-1} x = c \] ### Step 4: Combine like terms Combining the \( \sin^{-1} x \) terms: \[ (a + b) \sin^{-1} x - \frac{b\pi}{2} = c \] ### Step 5: Solve for \( \sin^{-1} x \) Rearranging gives: \[ (a + b) \sin^{-1} x = c + \frac{b\pi}{2} \] Thus, we can express \( \sin^{-1} x \) as: \[ \sin^{-1} x = \frac{c + \frac{b\pi}{2}}{a + b} \] ### Step 6: Find \( a \sin^{-1} x + b \cos^{-1} x \) Now, we can find \( a \sin^{-1} x + b \cos^{-1} x \): Using the identity for \( \cos^{-1} x \): \[ b \cos^{-1} x = b \left( \frac{\pi}{2} - \sin^{-1} x \right) \] So, \[ a \sin^{-1} x + b \cos^{-1} x = a \sin^{-1} x + b \left( \frac{\pi}{2} - \sin^{-1} x \right) \] This simplifies to: \[ = a \sin^{-1} x + \frac{b\pi}{2} - b \sin^{-1} x \] \[ = (a - b) \sin^{-1} x + \frac{b\pi}{2} \] ### Step 7: Substitute \( \sin^{-1} x \) back into the equation Substituting \( \sin^{-1} x \) from Step 5: \[ = (a - b) \left( \frac{c + \frac{b\pi}{2}}{a + b} \right) + \frac{b\pi}{2} \] This leads to: \[ = \frac{(a - b)(c + \frac{b\pi}{2})}{a + b} + \frac{b\pi}{2} \] ### Step 8: Combine the terms To combine the terms, we can express \( \frac{b\pi}{2} \) in terms of a common denominator: \[ = \frac{(a - b)(c + \frac{b\pi}{2}) + \frac{b\pi}{2}(a + b)}{a + b} \] This gives us the final expression for \( a \sin^{-1} x + b \cos^{-1} x \). ### Final Result Thus, the value of \( a \sin^{-1} x + b \cos^{-1} x \) is: \[ \frac{(a - b)c + \frac{(a + b)b\pi}{2}}{a + b} \]

To solve the equation \( a \sin^{-1} x - b \cos^{-1} x = c \) and find \( a \sin^{-1} x + b \cos^{-1} x \), we can follow these steps: ### Step 1: Write down the given equation We start with the equation: \[ a \sin^{-1} x - b \cos^{-1} x = c \] ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked comprehension type|16 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.6|9 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

If asin^(-1)x-bcos^(-1)x=c , then asin^(-1)x+bcos^(-1)x is equal to (a) 0 (b) (pia b+c(b-a))/(a+b) (c) pi/2 (d) (pia b+c(a-b))/(a+b)

The value of 2tan^(-1)(cos e ctan^(-1)x-tancot^(-1)x) is equal to (a) cot^(-1)x (b) cot^(-1)1/x (c) tan^(-1)x (d) none of these

If lim_(xrarr1)((asin(x-1)+bcos(x-1)+4))/(x^2-1)=2 , then (a,b) is equal to

If cos^(-1)(4x^3-3x)=a+bcos^(-1)x" for "-1 lt x lt -1/2, then [a + b+ 4] is equal to {where [] denotes G.I.F}

lf x >=0 and theta = sin^(-1)x + cos^(-1)x-tan^(-1) x , then

If asin^2(x+y)=b , then find the value of dy/dx

If 10^(x-1) + 10^(-x-1) = (1)/(3) , then x equals to

If asin^2x+bcos^2x=c,bsin^2y+acos^2y=d,and atanx=btany , then prove that a^2/b^2=((d-a)(c-a))/((b-c)(b-d)) .

If asin^2x+bcos^2x=c,bsin^2y+acos^2y=d and atanx=btany then a^2/b^2=........ (0ltx,yltpi/ 2)

If x=acos^(3)t and y=asin^(3)t , then (dy)/(dx) is equal to

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Single correct
  1. Prove that : 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1)...

    Text Solution

    |

  2. If sin^(-1)a+sin^(-1)b+sin^(-1)c=pi, then the value of asqrt((1-a^2))+...

    Text Solution

    |

  3. lf asin^-1 x -bcos^-1 x=c,then asin^-1 x +bcos^-1 equal to

    Text Solution

    |

  4. The solution of the inequality "log"(2) sin^(-1) x gt "log"(1//2) cos^...

    Text Solution

    |

  5. sin − 1 ( sin θ ) > π 2 − sin − 1 ( sin θ ) find the range of θ

    Text Solution

    |

  6. If |sin^(-1)x|+|cos^(-1)x| = pi/2, then x in

    Text Solution

    |

  7. If (sin^(-1) x)^(2) - (cos^(-1) x)^(2) = a pi^(2) then find the range ...

    Text Solution

    |

  8. The number of integer x satisfying sin^(-1)|x-2|+cos^(-1)(1-|3-x|)=pi/...

    Text Solution

    |

  9. The number of solutions of the equation cos^(-1)((1+x^2)/(2x))-cos^(-1...

    Text Solution

    |

  10. f(x)=tan^(-1)x+tan^(-1)(1/x);g(x)=sin^(-1)x+cos^(-1)x are identical fu...

    Text Solution

    |

  11. The value of a for which a x^2+sin^(-1)(x^2-2x+2)+cos^(-1)(x^2-2x+2)=1...

    Text Solution

    |

  12. If sin^(-1)(5/x)+sin^(-1)((12)/x)=pi/2, then x is equal to 7/(13) (b)...

    Text Solution

    |

  13. if cos^(- 1)sqrt(p)+cos^(- 1)sqrt(1-p)+cos^(- 1)sqrt(1-q)=(3pi)/4 ,the...

    Text Solution

    |

  14. If tan^(-1)(sin^2theta-2sintheta+3)+cot^(-1)(5^sec^(2y)+1)=pi/2, then ...

    Text Solution

    |

  15. The product of all values of x satisfying the equation sin^(-1)cos((2x...

    Text Solution

    |

  16. The exhaustive set of values of a for which a - cot^(-1) 3x = 2 tan^(-...

    Text Solution

    |

  17. If u=cot^-1 sqrt(tanalpha)-tan^-1 sqrt(tan alpha), then tan(pi/4-u/2) ...

    Text Solution

    |

  18. The solution set of the equation sin^(-1) sqrt(1 - x^(2)) + cos^(-1)...

    Text Solution

    |

  19. the value of cos^-1sqrt(2/3)-cos^-1 ((sqrt6+1)/(2sqrt3)) is equal to:

    Text Solution

    |

  20. theta = tan^(-1) (2 tan^(2) theta) - tan^(-1) ((1)/(3) tan theta) " th...

    Text Solution

    |