Home
Class 12
MATHS
The solution of the inequality "log"(2) ...

The solution of the inequality `"log"_(2) sin^(-1) x gt "log"_(1//2) cos^(-1) x` is

A

`x in [0, (pi)/(sqrt2)]`

B

`x in ((1)/(sqrt2), 1]`

C

`x in (0, (1)/(sqrt2))`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( \log_{1/2}(\sin^{-1} x) > \log_{1/2}(\cos^{-1} x) \), we will follow these steps: ### Step 1: Rewrite the Inequality We start with the given inequality: \[ \log_{1/2}(\sin^{-1} x) > \log_{1/2}(\cos^{-1} x) \] Since the base of the logarithm \( \frac{1}{2} \) is less than 1, we can rewrite the inequality by switching the direction of the inequality: \[ \sin^{-1} x < \cos^{-1} x \] ### Step 2: Analyze the Functions The functions \( \sin^{-1} x \) and \( \cos^{-1} x \) are defined for \( x \) in the interval \( [0, 1] \). We know: - \( \sin^{-1} x \) is increasing on \( [0, 1] \) - \( \cos^{-1} x \) is decreasing on \( [0, 1] \) ### Step 3: Find the Intersection Point To find when \( \sin^{-1} x = \cos^{-1} x \): \[ \sin^{-1} x + \cos^{-1} x = \frac{\pi}{2} \] This equality holds when: \[ \sin^{-1} x = \cos^{-1} x \implies x = \frac{1}{\sqrt{2}} \text{ or } x = \frac{\sqrt{2}}{2} \] ### Step 4: Determine the Valid Range We need to find the values of \( x \) for which \( \sin^{-1} x < \cos^{-1} x \). Since \( \sin^{-1} x \) is less than \( \cos^{-1} x \) for \( x < \frac{1}{\sqrt{2}} \) and equal at \( x = \frac{1}{\sqrt{2}} \), we conclude: \[ x < \frac{1}{\sqrt{2}} \] ### Step 5: Combine with the Domain The domain of \( x \) is \( [0, 1] \). Therefore, combining the conditions, we have: \[ 0 \leq x < \frac{1}{\sqrt{2}} \] ### Final Solution Thus, the solution to the inequality \( \log_{1/2}(\sin^{-1} x) > \log_{1/2}(\cos^{-1} x) \) is: \[ x \in \left[0, \frac{1}{\sqrt{2}}\right) \]

To solve the inequality \( \log_{1/2}(\sin^{-1} x) > \log_{1/2}(\cos^{-1} x) \), we will follow these steps: ### Step 1: Rewrite the Inequality We start with the given inequality: \[ \log_{1/2}(\sin^{-1} x) > \log_{1/2}(\cos^{-1} x) \] Since the base of the logarithm \( \frac{1}{2} \) is less than 1, we can rewrite the inequality by switching the direction of the inequality: ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked comprehension type|16 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.6|9 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

The solution of the inequality log_(1//2) sinx gt log_(1//2) cosx is

The solution of the inequality (log)_(1/2sin^(-1)x >(log)_(1//2)cos^(-1)x is x in [(0,1)/(sqrt(2))] (b) x in [1/(sqrt(2)),1] x in ((0,1)/(sqrt(2))) (d) none of these

The solution set of the inequation "log"_(1//2) "sin" x gt "log"_(1//2) "cos" x "in" [0, 2pi] , is

The solution of the equation "log"_("cos"x) "sin" x + "log"_("sin"x) "cos" x = 2 is given by

Solve the inequality: log_(1//2)(x+1) gt log_(2)(2-x)

log (sin ^(-1)x)

The solution of the equation log _( cosx ^(2)) (3-2x) lt log _( cos x ^(2)) (2x -1) is:

The solution set of the inequation (x-1)/(x-2) gt 2, is

The solution set of the inequality log_(5/8)(2x^(2)-x-3/8) ge1 is-

The solution set of the inequation |(2x-1)/(x-1)| gt 2 , is

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Single correct
  1. If sin^(-1)a+sin^(-1)b+sin^(-1)c=pi, then the value of asqrt((1-a^2))+...

    Text Solution

    |

  2. lf asin^-1 x -bcos^-1 x=c,then asin^-1 x +bcos^-1 equal to

    Text Solution

    |

  3. The solution of the inequality "log"(2) sin^(-1) x gt "log"(1//2) cos^...

    Text Solution

    |

  4. sin − 1 ( sin θ ) > π 2 − sin − 1 ( sin θ ) find the range of θ

    Text Solution

    |

  5. If |sin^(-1)x|+|cos^(-1)x| = pi/2, then x in

    Text Solution

    |

  6. If (sin^(-1) x)^(2) - (cos^(-1) x)^(2) = a pi^(2) then find the range ...

    Text Solution

    |

  7. The number of integer x satisfying sin^(-1)|x-2|+cos^(-1)(1-|3-x|)=pi/...

    Text Solution

    |

  8. The number of solutions of the equation cos^(-1)((1+x^2)/(2x))-cos^(-1...

    Text Solution

    |

  9. f(x)=tan^(-1)x+tan^(-1)(1/x);g(x)=sin^(-1)x+cos^(-1)x are identical fu...

    Text Solution

    |

  10. The value of a for which a x^2+sin^(-1)(x^2-2x+2)+cos^(-1)(x^2-2x+2)=1...

    Text Solution

    |

  11. If sin^(-1)(5/x)+sin^(-1)((12)/x)=pi/2, then x is equal to 7/(13) (b)...

    Text Solution

    |

  12. if cos^(- 1)sqrt(p)+cos^(- 1)sqrt(1-p)+cos^(- 1)sqrt(1-q)=(3pi)/4 ,the...

    Text Solution

    |

  13. If tan^(-1)(sin^2theta-2sintheta+3)+cot^(-1)(5^sec^(2y)+1)=pi/2, then ...

    Text Solution

    |

  14. The product of all values of x satisfying the equation sin^(-1)cos((2x...

    Text Solution

    |

  15. The exhaustive set of values of a for which a - cot^(-1) 3x = 2 tan^(-...

    Text Solution

    |

  16. If u=cot^-1 sqrt(tanalpha)-tan^-1 sqrt(tan alpha), then tan(pi/4-u/2) ...

    Text Solution

    |

  17. The solution set of the equation sin^(-1) sqrt(1 - x^(2)) + cos^(-1)...

    Text Solution

    |

  18. the value of cos^-1sqrt(2/3)-cos^-1 ((sqrt6+1)/(2sqrt3)) is equal to:

    Text Solution

    |

  19. theta = tan^(-1) (2 tan^(2) theta) - tan^(-1) ((1)/(3) tan theta) " th...

    Text Solution

    |

  20. If y = tan^(-1).(1)/(2) + tan^(-1) b, (0 b lt 1) and 0 lt y le (pi)/(4...

    Text Solution

    |