Home
Class 12
MATHS
If (sin^(-1) x)^(2) - (cos^(-1) x)^(2) =...

If `(sin^(-1) x)^(2) - (cos^(-1) x)^(2) = a pi^(2)` then find the range of a

A

`[-(3)/(4), (1)/(4)]`

B

`[-(3)/(4), (3)/(4)]`

C

`[-1, 1]`

D

`[-1, (3)/(4)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the range of \( a \) given the equation: \[ (\sin^{-1} x)^2 - (\cos^{-1} x)^2 = a \pi^2 \] ### Step 1: Use the identity for the difference of squares We can rewrite the left-hand side using the identity \( a^2 - b^2 = (a - b)(a + b) \): \[ (\sin^{-1} x - \cos^{-1} x)(\sin^{-1} x + \cos^{-1} x) = a \pi^2 \] ### Step 2: Use the known identity for inverse trigonometric functions We know that: \[ \sin^{-1} x + \cos^{-1} x = \frac{\pi}{2} \] Substituting this into our equation gives: \[ (\sin^{-1} x - \cos^{-1} x) \cdot \frac{\pi}{2} = a \pi^2 \] ### Step 3: Simplify the equation Now we can simplify this equation: \[ \sin^{-1} x - \cos^{-1} x = a \pi \cdot 2 \] ### Step 4: Express \(\cos^{-1} x\) in terms of \(\sin^{-1} x\) We can express \(\cos^{-1} x\) as: \[ \cos^{-1} x = \frac{\pi}{2} - \sin^{-1} x \] Substituting this into our equation gives: \[ \sin^{-1} x - \left(\frac{\pi}{2} - \sin^{-1} x\right) = 2a \pi \] ### Step 5: Combine like terms This simplifies to: \[ 2 \sin^{-1} x - \frac{\pi}{2} = 2a \pi \] ### Step 6: Rearrange the equation Rearranging gives: \[ 2 \sin^{-1} x = 2a \pi + \frac{\pi}{2} \] ### Step 7: Divide by 2 Dividing the entire equation by 2 gives: \[ \sin^{-1} x = a \pi + \frac{\pi}{4} \] ### Step 8: Determine the range of \(\sin^{-1} x\) The range of \(\sin^{-1} x\) is: \[ -\frac{\pi}{2} \leq \sin^{-1} x \leq \frac{\pi}{2} \] ### Step 9: Set up inequalities Now we can set up inequalities based on the expression we derived: 1. From the lower bound: \[ a \pi + \frac{\pi}{4} \geq -\frac{\pi}{2} \] Simplifying this gives: \[ a \pi \geq -\frac{\pi}{2} - \frac{\pi}{4} = -\frac{3\pi}{4} \] Dividing by \(\pi\) (and reversing the inequality since \(\pi > 0\)): \[ a \geq -\frac{3}{4} \] 2. From the upper bound: \[ a \pi + \frac{\pi}{4} \leq \frac{\pi}{2} \] Simplifying this gives: \[ a \pi \leq \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4} \] Dividing by \(\pi\): \[ a \leq \frac{1}{4} \] ### Final Step: Combine the inequalities Combining these results, we find: \[ -\frac{3}{4} \leq a \leq \frac{1}{4} \] Thus, the range of \( a \) is: \[ \boxed{\left[-\frac{3}{4}, \frac{1}{4}\right]} \]

To solve the problem, we need to find the range of \( a \) given the equation: \[ (\sin^{-1} x)^2 - (\cos^{-1} x)^2 = a \pi^2 \] ### Step 1: Use the identity for the difference of squares We can rewrite the left-hand side using the identity \( a^2 - b^2 = (a - b)(a + b) \): ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked comprehension type|16 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.6|9 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

If (sin^(-1)x)^(2)+(cos^(-1)x)^(2)=(5pi^(2))/(8) then x =

If (sin^(-1) x)^2 + (cos^(-1)x)^2 =(5pi^2)/8 then one of the values of x is

If (sin^(-1)x)^2+(cos^(-1)x)^2=(17pi^2)/(36) , find x

If (sin^(-1)x)^2+(cos^(-1)x)^2=(17pi^2)/(36) , find xdot

If sin^(-1)x+2cos^(-1)x=(2pi)/3 , then find x.

Solve sin^(-1)(x^(2)-2x+1)+cos^(-1)(x^(2)-x)=(pi)/2

If sin^(-1)(5/x)+cos^(-1)(x/5)=pi/2 ,then find x.

If sin^(-1)(1/3)+cos^(-1)x=pi/2 ,then find x

If sin^(-1)(1/3)+cos^(-1)x=pi/2,then find x

If |sin^(-1)x|+|cos^(-1)x| = pi/2, then x in

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Single correct
  1. sin − 1 ( sin θ ) > π 2 − sin − 1 ( sin θ ) find the range of θ

    Text Solution

    |

  2. If |sin^(-1)x|+|cos^(-1)x| = pi/2, then x in

    Text Solution

    |

  3. If (sin^(-1) x)^(2) - (cos^(-1) x)^(2) = a pi^(2) then find the range ...

    Text Solution

    |

  4. The number of integer x satisfying sin^(-1)|x-2|+cos^(-1)(1-|3-x|)=pi/...

    Text Solution

    |

  5. The number of solutions of the equation cos^(-1)((1+x^2)/(2x))-cos^(-1...

    Text Solution

    |

  6. f(x)=tan^(-1)x+tan^(-1)(1/x);g(x)=sin^(-1)x+cos^(-1)x are identical fu...

    Text Solution

    |

  7. The value of a for which a x^2+sin^(-1)(x^2-2x+2)+cos^(-1)(x^2-2x+2)=1...

    Text Solution

    |

  8. If sin^(-1)(5/x)+sin^(-1)((12)/x)=pi/2, then x is equal to 7/(13) (b)...

    Text Solution

    |

  9. if cos^(- 1)sqrt(p)+cos^(- 1)sqrt(1-p)+cos^(- 1)sqrt(1-q)=(3pi)/4 ,the...

    Text Solution

    |

  10. If tan^(-1)(sin^2theta-2sintheta+3)+cot^(-1)(5^sec^(2y)+1)=pi/2, then ...

    Text Solution

    |

  11. The product of all values of x satisfying the equation sin^(-1)cos((2x...

    Text Solution

    |

  12. The exhaustive set of values of a for which a - cot^(-1) 3x = 2 tan^(-...

    Text Solution

    |

  13. If u=cot^-1 sqrt(tanalpha)-tan^-1 sqrt(tan alpha), then tan(pi/4-u/2) ...

    Text Solution

    |

  14. The solution set of the equation sin^(-1) sqrt(1 - x^(2)) + cos^(-1)...

    Text Solution

    |

  15. the value of cos^-1sqrt(2/3)-cos^-1 ((sqrt6+1)/(2sqrt3)) is equal to:

    Text Solution

    |

  16. theta = tan^(-1) (2 tan^(2) theta) - tan^(-1) ((1)/(3) tan theta) " th...

    Text Solution

    |

  17. If y = tan^(-1).(1)/(2) + tan^(-1) b, (0 b lt 1) and 0 lt y le (pi)/(4...

    Text Solution

    |

  18. If x , y , z are natural numbers such that cot^(-1)x+cot^(-1)y=cot^(-1...

    Text Solution

    |

  19. The value of alpha such that sin^(-1)2/(sqrt(5)),sin^(-1)3/(sqrt(10)),...

    Text Solution

    |

  20. The number of solution of the equation tan^(-1) (1 + x) + tan^(-1) (1 ...

    Text Solution

    |