Home
Class 12
MATHS
The number of integer x satisfying sin^(...

The number of integer `x` satisfying `sin^(-1)|x-2|+cos^(-1)(1-|3-x|)=pi/2` is 1 (b) 2 (c) 3 (d) 4

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin^{-1} |x - 2| + \cos^{-1} (1 - |3 - x|) = \frac{\pi}{2} \), we will follow these steps: ### Step 1: Understand the relationship between inverse trigonometric functions We know that: \[ \sin^{-1} a + \cos^{-1} b = \frac{\pi}{2} \quad \text{if and only if} \quad a = b \] Thus, we can set: \[ |x - 2| = 1 - |3 - x| \] ### Step 2: Solve the equation \( |x - 2| = 1 - |3 - x| \) We will consider the two cases for the absolute values. **Case 1:** \( x - 2 \geq 0 \) and \( 3 - x \geq 0 \) This implies: \[ x - 2 = 1 - (3 - x) \] Simplifying gives: \[ x - 2 = 1 - 3 + x \] \[ x - 2 = x - 2 \] This is always true for \( 2 \leq x \leq 3 \). **Case 2:** \( x - 2 \geq 0 \) and \( 3 - x < 0 \) This implies: \[ x - 2 = 1 - (x - 3) \] Simplifying gives: \[ x - 2 = 1 - x + 3 \] \[ x - 2 = 4 - x \] \[ 2x = 6 \quad \Rightarrow \quad x = 3 \] **Case 3:** \( x - 2 < 0 \) and \( 3 - x \geq 0 \) This implies: \[ -(x - 2) = 1 - (3 - x) \] Simplifying gives: \[ - x + 2 = 1 - 3 + x \] \[ - x + 2 = -2 + x \] \[ 2 + 2 = 2x \quad \Rightarrow \quad x = 2 \] **Case 4:** \( x - 2 < 0 \) and \( 3 - x < 0 \) This implies: \[ -(x - 2) = 1 - (x - 3) \] Simplifying gives: \[ - x + 2 = 1 - x + 3 \] \[ - x + 2 = 4 - x \] This is again always true. ### Step 3: Determine the range of \( x \) From the cases, we have the following: - From Case 1, \( 2 \leq x \leq 3 \) - From Case 2, \( x = 3 \) - From Case 3, \( x = 2 \) - From Case 4, \( x \) can be any value less than 2 or greater than 3, but we are only interested in the range \( 2 \leq x \leq 3 \). ### Step 4: Count the integer solutions The integers \( x \) that satisfy \( 2 \leq x \leq 3 \) are: - \( x = 2 \) - \( x = 3 \) Thus, there are **2 integer solutions**. ### Final Answer The number of integer \( x \) satisfying the equation is **2**. ---

To solve the equation \( \sin^{-1} |x - 2| + \cos^{-1} (1 - |3 - x|) = \frac{\pi}{2} \), we will follow these steps: ### Step 1: Understand the relationship between inverse trigonometric functions We know that: \[ \sin^{-1} a + \cos^{-1} b = \frac{\pi}{2} \quad \text{if and only if} \quad a = b \] Thus, we can set: ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked comprehension type|16 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.6|9 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

The number of triple satisfying sin^(-1)x+cos^(-1)y+sin^(-1)z=2pi is

The number of solutions of the equation tan^(-1)(1+x)+tan^(-1)(1-x)=pi/2 is 2 (b) 3 (c) 1 (d) 0

The sum of the solution of the equation 2sin^(-1)sqrt(x^2+x+1)+cos^(-1)sqrt(x^2+x)=(3pi)/2 is 0 (b) -1 (c) 1 (d) 2

The number of real values of x satisfying tan^-1(x/(1-x^2))+tan^-1 (1/x^3) =(3pi)/(4)

The number of solutions of the equation cos^(-1)((1+x^2)/(2x))-cos^(-1)x=pi/2+sin^(-1)x is 0 (b) 1 (c) 2 (d) 3

The number of solutions of the equation cos^(-1)((1+x^2)/(2x))-cos^(-1)x=pi/2+sin^(-1)x is 0 (b) 1 (c) 2 (d) 3

Number of integers satisfying the inequation (x^2-x-1)(x^2-x-7)<-5, are 4 (b) 2 (c) 1 (d) 0

Find the value of x satisfying the equation 2cos^(-1)(1-x)-3cos^(-1)x=pi

If |sin^(-1)x|+|cos^(-1)x|=pi/2,t hen (a) x inR (b) [-1,1] (c) [0,1] (d) varphi

Number of integers satisfying the inequality (log)_(1/2)|x-3|>-1 is.....

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Single correct
  1. If |sin^(-1)x|+|cos^(-1)x| = pi/2, then x in

    Text Solution

    |

  2. If (sin^(-1) x)^(2) - (cos^(-1) x)^(2) = a pi^(2) then find the range ...

    Text Solution

    |

  3. The number of integer x satisfying sin^(-1)|x-2|+cos^(-1)(1-|3-x|)=pi/...

    Text Solution

    |

  4. The number of solutions of the equation cos^(-1)((1+x^2)/(2x))-cos^(-1...

    Text Solution

    |

  5. f(x)=tan^(-1)x+tan^(-1)(1/x);g(x)=sin^(-1)x+cos^(-1)x are identical fu...

    Text Solution

    |

  6. The value of a for which a x^2+sin^(-1)(x^2-2x+2)+cos^(-1)(x^2-2x+2)=1...

    Text Solution

    |

  7. If sin^(-1)(5/x)+sin^(-1)((12)/x)=pi/2, then x is equal to 7/(13) (b)...

    Text Solution

    |

  8. if cos^(- 1)sqrt(p)+cos^(- 1)sqrt(1-p)+cos^(- 1)sqrt(1-q)=(3pi)/4 ,the...

    Text Solution

    |

  9. If tan^(-1)(sin^2theta-2sintheta+3)+cot^(-1)(5^sec^(2y)+1)=pi/2, then ...

    Text Solution

    |

  10. The product of all values of x satisfying the equation sin^(-1)cos((2x...

    Text Solution

    |

  11. The exhaustive set of values of a for which a - cot^(-1) 3x = 2 tan^(-...

    Text Solution

    |

  12. If u=cot^-1 sqrt(tanalpha)-tan^-1 sqrt(tan alpha), then tan(pi/4-u/2) ...

    Text Solution

    |

  13. The solution set of the equation sin^(-1) sqrt(1 - x^(2)) + cos^(-1)...

    Text Solution

    |

  14. the value of cos^-1sqrt(2/3)-cos^-1 ((sqrt6+1)/(2sqrt3)) is equal to:

    Text Solution

    |

  15. theta = tan^(-1) (2 tan^(2) theta) - tan^(-1) ((1)/(3) tan theta) " th...

    Text Solution

    |

  16. If y = tan^(-1).(1)/(2) + tan^(-1) b, (0 b lt 1) and 0 lt y le (pi)/(4...

    Text Solution

    |

  17. If x , y , z are natural numbers such that cot^(-1)x+cot^(-1)y=cot^(-1...

    Text Solution

    |

  18. The value of alpha such that sin^(-1)2/(sqrt(5)),sin^(-1)3/(sqrt(10)),...

    Text Solution

    |

  19. The number of solution of the equation tan^(-1) (1 + x) + tan^(-1) (1 ...

    Text Solution

    |

  20. Arithmetic mean of the non-zero solutions of the equation tan^-1 (1/(2...

    Text Solution

    |