Home
Class 12
MATHS
The number of solutions of the equation ...

The number of solutions of the equation `cos^(-1)((1+x^2)/(2x))-cos^(-1)x=pi/2+sin^(-1)x` is 0 (b) 1 (c) 2 (d) 3

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos^{-1}\left(\frac{1+x^2}{2x}\right) - \cos^{-1}(x) = \frac{\pi}{2} + \sin^{-1}(x) \), we will follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ \cos^{-1}\left(\frac{1+x^2}{2x}\right) - \cos^{-1}(x) = \frac{\pi}{2} + \sin^{-1}(x) \] ### Step 2: Use the identity We know that: \[ \cos^{-1}(x) + \sin^{-1}(x) = \frac{\pi}{2} \] Thus, we can rewrite the right-hand side: \[ \frac{\pi}{2} + \sin^{-1}(x) = \cos^{-1}(x) + \sin^{-1}(x) + \sin^{-1}(x) = \cos^{-1}(x) + 2\sin^{-1}(x) \] ### Step 3: Rearranging the equation Now, we can rearrange our equation: \[ \cos^{-1}\left(\frac{1+x^2}{2x}\right) = \cos^{-1}(x) + 2\sin^{-1}(x) \] ### Step 4: Simplifying further Using the identity again, we can express \(2\sin^{-1}(x)\) in terms of cosine: \[ \cos^{-1}\left(\frac{1+x^2}{2x}\right) = \cos^{-1}(x) + \cos^{-1}(x) = \cos^{-1}(x) + \cos^{-1}(x) = \cos^{-1}(x^2) \] ### Step 5: Set the arguments equal From the previous step, we have: \[ \frac{1+x^2}{2x} = -1 \] This leads to: \[ 1 + x^2 = -2x \] ### Step 6: Rearranging the equation Rearranging gives us: \[ x^2 + 2x + 1 = 0 \] ### Step 7: Factor the quadratic This can be factored as: \[ (x + 1)^2 = 0 \] ### Step 8: Solve for \(x\) Thus, we find: \[ x + 1 = 0 \implies x = -1 \] ### Step 9: Determine the number of solutions The equation \( (x + 1)^2 = 0 \) has a double root at \( x = -1 \), which means there is only one unique solution. ### Final Answer The number of solutions of the equation is \( \boxed{1} \). ---

To solve the equation \( \cos^{-1}\left(\frac{1+x^2}{2x}\right) - \cos^{-1}(x) = \frac{\pi}{2} + \sin^{-1}(x) \), we will follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ \cos^{-1}\left(\frac{1+x^2}{2x}\right) - \cos^{-1}(x) = \frac{\pi}{2} + \sin^{-1}(x) \] ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked comprehension type|16 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.6|9 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

Number of solutions (s) of the equations cos^(-1) ( 1-x) - 2 cos^(-1) x = pi/2 is

Number of solution of the equation 2sin^(-1)(x+2)=cos^(-1)(x+3) is :

Find the number of real solutions of the equation sin^(-1)(e^(x))+cos^(-1)(x^(2))=pi//2 .

The solution of the equation cos^(-1)x+cos^(-1)2x=(2pi)/(3) is

Total number of solution of the equation cos^(-1)((1-x^2)/(1+x^2))=sin^(-1)x is/are one (b) two (c) three (d) four

The number of roots of the equation sin^(-1)x-(1)/(sin^(-1)x)=cos^(-1)x-(1)/(cos^(-1)x) is (a) 0 (b) 1 (c) 2 (d) 3

The number of solutions for the equation sin^(-1) sqrt((x^(2)-x+1))+cos^(-1)sqrt((x^(2)-x))=pi is :

The number of solution of the equation 2sin^(-1)((2x)/(1+x^(2)))-pi x^(3)=0 is equal to

The number of solutions of the equation tan^(-1)(1+x)+tan^(-1)(1-x)=pi/2 is 2 (b) 3 (c) 1 (d) 0

The sum of the solution of the equation 2sin^(-1)sqrt(x^2+x+1)+cos^(-1)sqrt(x^2+x)=(3pi)/2 is 0 (b) -1 (c) 1 (d) 2

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Single correct
  1. If (sin^(-1) x)^(2) - (cos^(-1) x)^(2) = a pi^(2) then find the range ...

    Text Solution

    |

  2. The number of integer x satisfying sin^(-1)|x-2|+cos^(-1)(1-|3-x|)=pi/...

    Text Solution

    |

  3. The number of solutions of the equation cos^(-1)((1+x^2)/(2x))-cos^(-1...

    Text Solution

    |

  4. f(x)=tan^(-1)x+tan^(-1)(1/x);g(x)=sin^(-1)x+cos^(-1)x are identical fu...

    Text Solution

    |

  5. The value of a for which a x^2+sin^(-1)(x^2-2x+2)+cos^(-1)(x^2-2x+2)=1...

    Text Solution

    |

  6. If sin^(-1)(5/x)+sin^(-1)((12)/x)=pi/2, then x is equal to 7/(13) (b)...

    Text Solution

    |

  7. if cos^(- 1)sqrt(p)+cos^(- 1)sqrt(1-p)+cos^(- 1)sqrt(1-q)=(3pi)/4 ,the...

    Text Solution

    |

  8. If tan^(-1)(sin^2theta-2sintheta+3)+cot^(-1)(5^sec^(2y)+1)=pi/2, then ...

    Text Solution

    |

  9. The product of all values of x satisfying the equation sin^(-1)cos((2x...

    Text Solution

    |

  10. The exhaustive set of values of a for which a - cot^(-1) 3x = 2 tan^(-...

    Text Solution

    |

  11. If u=cot^-1 sqrt(tanalpha)-tan^-1 sqrt(tan alpha), then tan(pi/4-u/2) ...

    Text Solution

    |

  12. The solution set of the equation sin^(-1) sqrt(1 - x^(2)) + cos^(-1)...

    Text Solution

    |

  13. the value of cos^-1sqrt(2/3)-cos^-1 ((sqrt6+1)/(2sqrt3)) is equal to:

    Text Solution

    |

  14. theta = tan^(-1) (2 tan^(2) theta) - tan^(-1) ((1)/(3) tan theta) " th...

    Text Solution

    |

  15. If y = tan^(-1).(1)/(2) + tan^(-1) b, (0 b lt 1) and 0 lt y le (pi)/(4...

    Text Solution

    |

  16. If x , y , z are natural numbers such that cot^(-1)x+cot^(-1)y=cot^(-1...

    Text Solution

    |

  17. The value of alpha such that sin^(-1)2/(sqrt(5)),sin^(-1)3/(sqrt(10)),...

    Text Solution

    |

  18. The number of solution of the equation tan^(-1) (1 + x) + tan^(-1) (1 ...

    Text Solution

    |

  19. Arithmetic mean of the non-zero solutions of the equation tan^-1 (1/(2...

    Text Solution

    |

  20. If cot^(-1)x+cot^(-1)y+cot^(-1)z=pi/2,x , y , z >0a n dx y<1, then x+y...

    Text Solution

    |