Home
Class 12
MATHS
f(x)=tan^(-1)x+tan^(-1)(1/x);g(x)=sin^(-...

`f(x)=tan^(-1)x+tan^(-1)(1/x);g(x)=sin^(-1)x+cos^(-1)x` are identical functions if `x in R` (b) `x >0` (c) `x in [-1,1]` (d) `x in [0,1]`

A

`x in R`

B

`x gt 0`

C

`x in [-1, 1]`

D

`x in (0,1]`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the conditions under which the functions \( f(x) = \tan^{-1} x + \tan^{-1} \left( \frac{1}{x} \right) \) and \( g(x) = \sin^{-1} x + \cos^{-1} x \) are identical, we will analyze each function step by step. ### Step 1: Analyze \( f(x) \) 1. **Rewrite \( f(x) \)**: \[ f(x) = \tan^{-1} x + \tan^{-1} \left( \frac{1}{x} \right) \] We can use the identity \( \tan^{-1} x + \tan^{-1} y = \tan^{-1} \left( \frac{x+y}{1-xy} \right) \) when \( xy < 1 \). Here, we can rewrite \( \tan^{-1} \left( \frac{1}{x} \right) \) as \( \cot^{-1} x \). 2. **Identify the conditions**: - For \( x > 0 \): \[ f(x) = \tan^{-1} x + \cot^{-1} x = \frac{\pi}{2} \] - For \( x < 0 \): \[ f(x) = \tan^{-1} x + \cot^{-1} x \text{ is not defined at } x = 0. \] ### Step 2: Analyze \( g(x) \) 1. **Rewrite \( g(x) \)**: \[ g(x) = \sin^{-1} x + \cos^{-1} x \] By the identity of inverse trigonometric functions, we know: \[ g(x) = \frac{\pi}{2} \quad \text{for } x \in [-1, 1]. \] ### Step 3: Compare \( f(x) \) and \( g(x) \) 1. **Identical Functions**: - For \( f(x) \) to equal \( g(x) \), both functions must equal \( \frac{\pi}{2} \). - From our analysis, \( f(x) = \frac{\pi}{2} \) when \( x > 0 \), and \( g(x) = \frac{\pi}{2} \) for \( x \in [-1, 1] \). ### Step 4: Determine the range of \( x \) 1. **Combine conditions**: - \( f(x) \) is defined for \( x > 0 \). - \( g(x) \) is defined for \( x \in [-1, 1] \). - The common range where both functions are defined and equal is: \[ x \in (0, 1]. \] ### Conclusion The functions \( f(x) \) and \( g(x) \) are identical when \( x \) is in the interval \( [0, 1] \). Therefore, the correct answer is: **(d) \( x \in [0, 1] \)**. ---

To determine the conditions under which the functions \( f(x) = \tan^{-1} x + \tan^{-1} \left( \frac{1}{x} \right) \) and \( g(x) = \sin^{-1} x + \cos^{-1} x \) are identical, we will analyze each function step by step. ### Step 1: Analyze \( f(x) \) 1. **Rewrite \( f(x) \)**: \[ f(x) = \tan^{-1} x + \tan^{-1} \left( \frac{1}{x} \right) \] ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked comprehension type|16 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.6|9 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

f(x)=tan^(-1)x+tan^(-1)(1/x);g(x)=sin^(-1)x+cos^(-1)x are identical functions if (A) x in R (B) x >0 (C) x in [-1,1] (D) x in [0,1]

tan^(-1) ((1-cos x)/(sin x))

f(x)=sqrt(1-x^(2)), g(x)=sqrt(1-x)*sqrt(1+x) . Identical functions or not?

If the function f(x)=sin^(-1)x+cos^(-1)x and g(x) are identical, then g(x) can be equal to

f(x)=2x-tan^(-1)x-log{x+sqrt(x^2+1)} is monotonically increasing when (a) x >0 (b) x<0 (c) x in R (d) x in R-{0}

If the range of f(x)=tan^(1)x+2sin^(-1)x+cos^(-1)x is [a, b] , then

Solve tan^(-1) ((1-x)/(1+x))= (1)/(2) tan^(-1) x(x gt 0)

If tan^(-1) ((x+1)/(x-1))+tan^(-1)((x-1)/x)=tan^(-1)(-7) , then the value of x is (a) 0 (b) -2 (c) 1 (d) 2

Solve for x :tan^(-1)((1-x)/(1+x))=1/2tan^(-1)x ,x >0

Solve : tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)=tan^(-1)3x

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Single correct
  1. The number of integer x satisfying sin^(-1)|x-2|+cos^(-1)(1-|3-x|)=pi/...

    Text Solution

    |

  2. The number of solutions of the equation cos^(-1)((1+x^2)/(2x))-cos^(-1...

    Text Solution

    |

  3. f(x)=tan^(-1)x+tan^(-1)(1/x);g(x)=sin^(-1)x+cos^(-1)x are identical fu...

    Text Solution

    |

  4. The value of a for which a x^2+sin^(-1)(x^2-2x+2)+cos^(-1)(x^2-2x+2)=1...

    Text Solution

    |

  5. If sin^(-1)(5/x)+sin^(-1)((12)/x)=pi/2, then x is equal to 7/(13) (b)...

    Text Solution

    |

  6. if cos^(- 1)sqrt(p)+cos^(- 1)sqrt(1-p)+cos^(- 1)sqrt(1-q)=(3pi)/4 ,the...

    Text Solution

    |

  7. If tan^(-1)(sin^2theta-2sintheta+3)+cot^(-1)(5^sec^(2y)+1)=pi/2, then ...

    Text Solution

    |

  8. The product of all values of x satisfying the equation sin^(-1)cos((2x...

    Text Solution

    |

  9. The exhaustive set of values of a for which a - cot^(-1) 3x = 2 tan^(-...

    Text Solution

    |

  10. If u=cot^-1 sqrt(tanalpha)-tan^-1 sqrt(tan alpha), then tan(pi/4-u/2) ...

    Text Solution

    |

  11. The solution set of the equation sin^(-1) sqrt(1 - x^(2)) + cos^(-1)...

    Text Solution

    |

  12. the value of cos^-1sqrt(2/3)-cos^-1 ((sqrt6+1)/(2sqrt3)) is equal to:

    Text Solution

    |

  13. theta = tan^(-1) (2 tan^(2) theta) - tan^(-1) ((1)/(3) tan theta) " th...

    Text Solution

    |

  14. If y = tan^(-1).(1)/(2) + tan^(-1) b, (0 b lt 1) and 0 lt y le (pi)/(4...

    Text Solution

    |

  15. If x , y , z are natural numbers such that cot^(-1)x+cot^(-1)y=cot^(-1...

    Text Solution

    |

  16. The value of alpha such that sin^(-1)2/(sqrt(5)),sin^(-1)3/(sqrt(10)),...

    Text Solution

    |

  17. The number of solution of the equation tan^(-1) (1 + x) + tan^(-1) (1 ...

    Text Solution

    |

  18. Arithmetic mean of the non-zero solutions of the equation tan^-1 (1/(2...

    Text Solution

    |

  19. If cot^(-1)x+cot^(-1)y+cot^(-1)z=pi/2,x , y , z >0a n dx y<1, then x+y...

    Text Solution

    |

  20. If x^2+y^2+z^2=r^2,t h e ntan^(-1)((x y)/(z r))+tan^(-1)((y z)/(x r))+...

    Text Solution

    |