Home
Class 12
MATHS
if cos^(- 1)sqrt(p)+cos^(- 1)sqrt(1-p)+c...

if `cos^(- 1)sqrt(p)+cos^(- 1)sqrt(1-p)+cos^(- 1)sqrt(1-q)=(3pi)/4` ,then the value of q is (A) 1 (B) `1/sqrt(2)` (C) `1/3` (D) `1/2`

A

1

B

`(1)/(sqrt2)`

C

`(1)/(3)`

D

`(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \cos^{-1}(\sqrt{p}) + \cos^{-1}(\sqrt{1-p}) + \cos^{-1}(\sqrt{1-q}) = \frac{3\pi}{4}, \] we will follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ \cos^{-1}(\sqrt{p}) + \cos^{-1}(\sqrt{1-p}) + \cos^{-1}(\sqrt{1-q}) = \frac{3\pi}{4}. \] ### Step 2: Use the identity for inverse cosine and sine Using the identity that states \[ \cos^{-1}(x) + \sin^{-1}(x) = \frac{\pi}{2}, \] we can rewrite \(\cos^{-1}(\sqrt{p}) + \cos^{-1}(\sqrt{1-p})\) as follows: \[ \cos^{-1}(\sqrt{p}) + \sin^{-1}(\sqrt{p}) = \frac{\pi}{2}. \] Thus, we can express \(\cos^{-1}(\sqrt{1-p})\) as: \[ \cos^{-1}(\sqrt{1-p}) = \frac{\pi}{2} - \sin^{-1}(\sqrt{p}). \] ### Step 3: Substitute back into the equation Now substituting this back into the equation gives: \[ \frac{\pi}{2} + \cos^{-1}(\sqrt{1-q}) = \frac{3\pi}{4}. \] ### Step 4: Isolate \(\cos^{-1}(\sqrt{1-q})\) Subtract \(\frac{\pi}{2}\) from both sides: \[ \cos^{-1}(\sqrt{1-q}) = \frac{3\pi}{4} - \frac{\pi}{2}. \] Calculating the right-hand side: \[ \frac{3\pi}{4} - \frac{2\pi}{4} = \frac{\pi}{4}. \] ### Step 5: Remove the inverse cosine Now we have: \[ \cos^{-1}(\sqrt{1-q}) = \frac{\pi}{4}. \] Taking the cosine of both sides gives: \[ \sqrt{1-q} = \cos\left(\frac{\pi}{4}\right). \] Since \(\cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}\), we have: \[ \sqrt{1-q} = \frac{1}{\sqrt{2}}. \] ### Step 6: Square both sides Squaring both sides results in: \[ 1 - q = \frac{1}{2}. \] ### Step 7: Solve for \(q\) Rearranging gives: \[ q = 1 - \frac{1}{2} = \frac{1}{2}. \] Thus, the value of \(q\) is \[ \boxed{\frac{1}{2}}. \]

To solve the equation \[ \cos^{-1}(\sqrt{p}) + \cos^{-1}(\sqrt{1-p}) + \cos^{-1}(\sqrt{1-q}) = \frac{3\pi}{4}, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked comprehension type|16 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.6|9 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

If cos^(-1)sqrt(p)+cos^(-1)sqrt(1-p)+cos^(-1)sqrt(1-q)=(3pi)/4, then the value of q is 1 (b) 1/(sqrt(2)) (c) 1/3 (d) 1/3

cos^-1[sqrt3/2]

cos^(-1)(sqrt((1+cos x)/2))

If 4\ cos^(-1)x+sin^(-1)x=pi , then the value of x is (a) 3/2 (b) 1/(sqrt(2)) (c) (sqrt(3))/2 (d) 2/(sqrt(3))

If sin^(-1)(x-1)+cos^(-1)(x-3)+tan^(-1)(x/(2-x^2))=cos^(-1)k+pi, then the value of k is (a)1 (b) -1/(sqrt(2)) (c) 1/(sqrt(2)) (d) non of these

1. sin^(-1)((1)/(sqrt(2))) 2. cos^(-1)((sqrt(3))/(2))

sin(A+B)=1/sqrt(2) cos(A-B)=sqrt3|2

Prove that : 4(sin^(-1)(1/sqrt(10)) + cos^(-1)( 2/sqrt(5)))=pi

If cos (sin^(-1)(2/sqrt(5)) + cos^(-1)x) = 0, then x is equal to A) 1/sqrt(5) B) (-2/sqrt(5)) C) (2/sqrt(5)) D) 1

If x^3f(x)=sqrt(1+cos2x)+|f(x)|, (-3pi)/4ltxlt(-pi) /2 and f(x)=(alphacosx)/(1+x^3) , then the value of alpha is (A) 2 (B) sqrt2 (C) -sqrt2 (D) 1

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Single correct
  1. The value of a for which a x^2+sin^(-1)(x^2-2x+2)+cos^(-1)(x^2-2x+2)=1...

    Text Solution

    |

  2. If sin^(-1)(5/x)+sin^(-1)((12)/x)=pi/2, then x is equal to 7/(13) (b)...

    Text Solution

    |

  3. if cos^(- 1)sqrt(p)+cos^(- 1)sqrt(1-p)+cos^(- 1)sqrt(1-q)=(3pi)/4 ,the...

    Text Solution

    |

  4. If tan^(-1)(sin^2theta-2sintheta+3)+cot^(-1)(5^sec^(2y)+1)=pi/2, then ...

    Text Solution

    |

  5. The product of all values of x satisfying the equation sin^(-1)cos((2x...

    Text Solution

    |

  6. The exhaustive set of values of a for which a - cot^(-1) 3x = 2 tan^(-...

    Text Solution

    |

  7. If u=cot^-1 sqrt(tanalpha)-tan^-1 sqrt(tan alpha), then tan(pi/4-u/2) ...

    Text Solution

    |

  8. The solution set of the equation sin^(-1) sqrt(1 - x^(2)) + cos^(-1)...

    Text Solution

    |

  9. the value of cos^-1sqrt(2/3)-cos^-1 ((sqrt6+1)/(2sqrt3)) is equal to:

    Text Solution

    |

  10. theta = tan^(-1) (2 tan^(2) theta) - tan^(-1) ((1)/(3) tan theta) " th...

    Text Solution

    |

  11. If y = tan^(-1).(1)/(2) + tan^(-1) b, (0 b lt 1) and 0 lt y le (pi)/(4...

    Text Solution

    |

  12. If x , y , z are natural numbers such that cot^(-1)x+cot^(-1)y=cot^(-1...

    Text Solution

    |

  13. The value of alpha such that sin^(-1)2/(sqrt(5)),sin^(-1)3/(sqrt(10)),...

    Text Solution

    |

  14. The number of solution of the equation tan^(-1) (1 + x) + tan^(-1) (1 ...

    Text Solution

    |

  15. Arithmetic mean of the non-zero solutions of the equation tan^-1 (1/(2...

    Text Solution

    |

  16. If cot^(-1)x+cot^(-1)y+cot^(-1)z=pi/2,x , y , z >0a n dx y<1, then x+y...

    Text Solution

    |

  17. If x^2+y^2+z^2=r^2,t h e ntan^(-1)((x y)/(z r))+tan^(-1)((y z)/(x r))+...

    Text Solution

    |

  18. The value of tan^(-1)((xcostheta)/(1-xsintheta))-cot^(-1)((costheta)/(...

    Text Solution

    |

  19. if cot^(-1)[sqrt(cosalpha)]-tan^(-1)[sqrt(cosalpha)]=x then sinx is eq...

    Text Solution

    |

  20. sum(r =1)^(n) sin^(-1) ((sqrtr - sqrt(r -1))/(sqrtr(r + 1))) is equal...

    Text Solution

    |