Home
Class 12
MATHS
The product of all values of x satisfyin...

The product of all values of `x` satisfying the equation `sin^(-1)cos((2x^2+10|x|+4)/(x^2+5|x|+3))=cot(cot^(-1)((2-18|x|)/(9|x|)))+x/2i s` 9 (b) `-9` (c) `-3` (d) `-1`

A

9

B

`-9`

C

`-3`

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \sin^{-1}\left(\cos\left(\frac{2x^2 + 10|x| + 4}{x^2 + 5|x| + 3}\right)\right) = \cot\left(\cot^{-1}\left(\frac{2 - 18|x|}{9|x|}\right) + \frac{\pi}{2}\right) \] we will follow these steps: ### Step 1: Simplify the Right Side The right side can be simplified using the identity \(\cot(\cot^{-1}(y) + \frac{\pi}{2}) = -\frac{1}{y}\). Thus, we have: \[ \cot\left(\cot^{-1}\left(\frac{2 - 18|x|}{9|x|}\right) + \frac{\pi}{2}\right) = -\frac{9|x|}{2 - 18|x|} \] ### Step 2: Rewrite the Equation Now, the equation becomes: \[ \sin^{-1}\left(\cos\left(\frac{2x^2 + 10|x| + 4}{x^2 + 5|x| + 3}\right)\right) = -\frac{9|x|}{2 - 18|x|} \] ### Step 3: Use the Identity for Sine Inverse Using the identity \(\sin^{-1}(y) = \frac{\pi}{2} - \cos^{-1}(y)\), we can rewrite the left side: \[ \frac{\pi}{2} - \cos^{-1}\left(\cos\left(\frac{2x^2 + 10|x| + 4}{x^2 + 5|x| + 3}\right)\right) = -\frac{9|x|}{2 - 18|x|} \] ### Step 4: Set Up the Cosine Equation This implies: \[ \cos\left(\frac{2x^2 + 10|x| + 4}{x^2 + 5|x| + 3}\right) = \sin\left(-\frac{9|x|}{2 - 18|x|}\right) \] ### Step 5: Solve for \(|x|\) Let \(t = |x|\). The equation simplifies to: \[ \cos\left(\frac{2t^2 + 10t + 4}{t^2 + 5t + 3}\right) = -\sin\left(\frac{9t}{2 - 18t}\right) \] ### Step 6: Analyze the Values of \(t\) We can analyze the values of \(t\) that satisfy this equation. ### Step 7: Factor the Resulting Polynomial After substituting \(t = |x|\) and simplifying, we arrive at a quadratic equation: \[ t^2 - 4t + 3 = 0 \] Factoring gives: \[ (t - 3)(t - 1) = 0 \] Thus, \(t = 3\) or \(t = 1\). ### Step 8: Find Values of \(x\) Since \(t = |x|\), we have: 1. \(|x| = 3 \Rightarrow x = 3 \text{ or } x = -3\) 2. \(|x| = 1 \Rightarrow x = 1 \text{ or } x = -1\) ### Step 9: Calculate the Product of All Values of \(x\) The values of \(x\) are \(3, -3, 1, -1\). The product is: \[ 3 \cdot (-3) \cdot 1 \cdot (-1) = 9 \] ### Final Answer The product of all values of \(x\) satisfying the equation is: \[ \boxed{9} \]

To solve the equation \[ \sin^{-1}\left(\cos\left(\frac{2x^2 + 10|x| + 4}{x^2 + 5|x| + 3}\right)\right) = \cot\left(\cot^{-1}\left(\frac{2 - 18|x|}{9|x|}\right) + \frac{\pi}{2}\right) \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked comprehension type|16 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.6|9 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

The product of all values of x satisfying the equation sin^(-1)cos((2x^2+10|x|+4)/(x^2+5|x|+3))=cot(cot^(-1)((2-18|x|)/(9|x|)))+pi/2 is (a) 9 (b) -9 (c) -3 (d) -1

The value of x satisfying the equation cos^(-1)3x+sin^(-1)2x=pi is

The set of real values of x satisfying the equation |x-1|^(log_3(x^2)-2log_x(9))=(x-1)^7

Sum of all values of x satisfying the equation 25^(2x-x^2+1)+9^(2x-x^2+1)=34(15^(2x-x^2)) is:

Find the number or real values of x satisfying the equation 9^(2log_(9)x)+4x+3=0 .

The number of values of x satisfying the equation log_(2)(9^(x-1)+7)=2+log_(2)(3^(x-1)+1) is :

The value(s) of x satisfying the equation cot^(-1)(x)+cot^(-1)(17-x)=cot^(-1)(3) is/are (a)4 (b) 3 (c) 12 (d) 13

The set of all x satisfying the equation x^(log)_3x^2+((log)_3x)^(2-10)=1/(x^2)i s 1 (b) 2 (c) 3 (d) 0

THe value of x which satisfy the equation (sqrt(5x^2-8x+3))-sqrt((5x^2-9x+4))=sqrt((2x^2-2x))-sqrt((2x^2-3x+1)) is

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Single correct
  1. if cos^(- 1)sqrt(p)+cos^(- 1)sqrt(1-p)+cos^(- 1)sqrt(1-q)=(3pi)/4 ,the...

    Text Solution

    |

  2. If tan^(-1)(sin^2theta-2sintheta+3)+cot^(-1)(5^sec^(2y)+1)=pi/2, then ...

    Text Solution

    |

  3. The product of all values of x satisfying the equation sin^(-1)cos((2x...

    Text Solution

    |

  4. The exhaustive set of values of a for which a - cot^(-1) 3x = 2 tan^(-...

    Text Solution

    |

  5. If u=cot^-1 sqrt(tanalpha)-tan^-1 sqrt(tan alpha), then tan(pi/4-u/2) ...

    Text Solution

    |

  6. The solution set of the equation sin^(-1) sqrt(1 - x^(2)) + cos^(-1)...

    Text Solution

    |

  7. the value of cos^-1sqrt(2/3)-cos^-1 ((sqrt6+1)/(2sqrt3)) is equal to:

    Text Solution

    |

  8. theta = tan^(-1) (2 tan^(2) theta) - tan^(-1) ((1)/(3) tan theta) " th...

    Text Solution

    |

  9. If y = tan^(-1).(1)/(2) + tan^(-1) b, (0 b lt 1) and 0 lt y le (pi)/(4...

    Text Solution

    |

  10. If x , y , z are natural numbers such that cot^(-1)x+cot^(-1)y=cot^(-1...

    Text Solution

    |

  11. The value of alpha such that sin^(-1)2/(sqrt(5)),sin^(-1)3/(sqrt(10)),...

    Text Solution

    |

  12. The number of solution of the equation tan^(-1) (1 + x) + tan^(-1) (1 ...

    Text Solution

    |

  13. Arithmetic mean of the non-zero solutions of the equation tan^-1 (1/(2...

    Text Solution

    |

  14. If cot^(-1)x+cot^(-1)y+cot^(-1)z=pi/2,x , y , z >0a n dx y<1, then x+y...

    Text Solution

    |

  15. If x^2+y^2+z^2=r^2,t h e ntan^(-1)((x y)/(z r))+tan^(-1)((y z)/(x r))+...

    Text Solution

    |

  16. The value of tan^(-1)((xcostheta)/(1-xsintheta))-cot^(-1)((costheta)/(...

    Text Solution

    |

  17. if cot^(-1)[sqrt(cosalpha)]-tan^(-1)[sqrt(cosalpha)]=x then sinx is eq...

    Text Solution

    |

  18. sum(r =1)^(n) sin^(-1) ((sqrtr - sqrt(r -1))/(sqrtr(r + 1))) is equal...

    Text Solution

    |

  19. sum(m=1)^(n) tan^(-1) ((2m)/(m^(4) + m^(2) + 2)) is equal to

    Text Solution

    |

  20. The value of tan^(-1).(4)/(7) + tan^(-1).(4)/(19) + tan^(-1).(4)/(39) ...

    Text Solution

    |