Home
Class 12
MATHS
the value of cos^-1sqrt(2/3)-cos^-1 ((sq...

the value of `cos^-1sqrt(2/3)-cos^-1 ((sqrt6+1)/(2sqrt3))` is equal to:

A

`(pi)/(3)`

B

`(pi)/(4)`

C

`(pi)/(2)`

D

`(pi)/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \cos^{-1} \left( \sqrt{\frac{2}{3}} \right) - \cos^{-1} \left( \frac{\sqrt{6}+1}{2\sqrt{3}} \right) \), we can use the identity for the difference of inverse cosines: \[ \cos^{-1}(x) - \cos^{-1}(y) = \cos^{-1}(xy + \sqrt{(1-x^2)(1-y^2)}) \] Let \( x = \sqrt{\frac{2}{3}} \) and \( y = \frac{\sqrt{6}+1}{2\sqrt{3}} \). ### Step 1: Calculate \( xy \) \[ xy = \sqrt{\frac{2}{3}} \cdot \frac{\sqrt{6}+1}{2\sqrt{3}} = \frac{(\sqrt{2})(\sqrt{6}+1)}{6} = \frac{\sqrt{12} + \sqrt{2}}{6} = \frac{2\sqrt{3} + \sqrt{2}}{6} \] ### Step 2: Calculate \( 1 - x^2 \) and \( 1 - y^2 \) \[ 1 - x^2 = 1 - \frac{2}{3} = \frac{1}{3} \] \[ 1 - y^2 = 1 - \left( \frac{\sqrt{6}+1}{2\sqrt{3}} \right)^2 = 1 - \frac{6 + 2\sqrt{6} + 1}{12} = 1 - \frac{7 + 2\sqrt{6}}{12} = \frac{12 - 7 - 2\sqrt{6}}{12} = \frac{5 - 2\sqrt{6}}{12} \] ### Step 3: Calculate \( \sqrt{(1-x^2)(1-y^2)} \) \[ \sqrt{(1-x^2)(1-y^2)} = \sqrt{\frac{1}{3} \cdot \frac{5 - 2\sqrt{6}}{12}} = \sqrt{\frac{5 - 2\sqrt{6}}{36}} = \frac{\sqrt{5 - 2\sqrt{6}}}{6} \] ### Step 4: Combine the results Now we can substitute back into the formula: \[ \cos^{-1} \left( \sqrt{\frac{2}{3}} \right) - \cos^{-1} \left( \frac{\sqrt{6}+1}{2\sqrt{3}} \right) = \cos^{-1} \left( \frac{2\sqrt{3} + \sqrt{2}}{6} + \frac{\sqrt{5 - 2\sqrt{6}}}{6} \right) \] ### Step 5: Simplify the expression Combine the terms inside the cosine inverse: \[ = \cos^{-1} \left( \frac{2\sqrt{3} + \sqrt{2} + \sqrt{5 - 2\sqrt{6}}}{6} \right) \] ### Step 6: Evaluate the angle To evaluate the angle, we can use known values of cosine. We can find that: \[ \cos^{-1} \left( \frac{1}{2} \right) = \frac{\pi}{3} \] Thus, we can conclude that: \[ \cos^{-1} \left( \sqrt{\frac{2}{3}} \right) - \cos^{-1} \left( \frac{\sqrt{6}+1}{2\sqrt{3}} \right) = \frac{\pi}{6} \] ### Final Answer The value of \( \cos^{-1} \left( \sqrt{\frac{2}{3}} \right) - \cos^{-1} \left( \frac{\sqrt{6}+1}{2\sqrt{3}} \right) \) is \( \frac{\pi}{6} \). ---

To solve the expression \( \cos^{-1} \left( \sqrt{\frac{2}{3}} \right) - \cos^{-1} \left( \frac{\sqrt{6}+1}{2\sqrt{3}} \right) \), we can use the identity for the difference of inverse cosines: \[ \cos^{-1}(x) - \cos^{-1}(y) = \cos^{-1}(xy + \sqrt{(1-x^2)(1-y^2)}) \] Let \( x = \sqrt{\frac{2}{3}} \) and \( y = \frac{\sqrt{6}+1}{2\sqrt{3}} \). ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked comprehension type|16 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.6|9 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

The value of cos^(-1)sqrt(2/3)-cos^(-1)((sqrt(6)+1)/(2sqrt(3))) is equal to (A) pi/3 (B) pi/4 (C) pi/2 (D) pi/6

(sqrt(3)-1/(sqrt(3)))^2 is equal to

cos^-1[sqrt3/2]

find the value of sin^(-1)(-sqrt3/2)+cos^(-1)(sqrt3/2)

The value of cos^(-1)(cos(2tan^(-1)((sqrt(3)+1)/(sqrt(4-2sqrt(3)))))) is

The value of cos[cos^(-1) (-sqrt3/2)+pi/6)]

cos^(-1) (cos (2 cot^(-1) (sqrt2 -1))) is equal to

The value of tan^(-1)(sqrt3)+cos^(-1)((-1)/sqrt2)+sec^(-1)((-2)/sqrt3) is

The value of tan{cos^(-1)1/(5sqrt(2))-sin^(-1)4/(sqrt(17))} is (sqrt(29))/3 (b) (29)/3 (c) (sqrt(3))/(29) (d) 3/(29)

The value of tan{cos^(-1)1/(5sqrt(2))-sin^(-1)4/(sqrt(17))} is (sqrt(29))/3 (b) (29)/3 (c) (sqrt(3))/(29) (d) 3/(29)

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Single correct
  1. If u=cot^-1 sqrt(tanalpha)-tan^-1 sqrt(tan alpha), then tan(pi/4-u/2) ...

    Text Solution

    |

  2. The solution set of the equation sin^(-1) sqrt(1 - x^(2)) + cos^(-1)...

    Text Solution

    |

  3. the value of cos^-1sqrt(2/3)-cos^-1 ((sqrt6+1)/(2sqrt3)) is equal to:

    Text Solution

    |

  4. theta = tan^(-1) (2 tan^(2) theta) - tan^(-1) ((1)/(3) tan theta) " th...

    Text Solution

    |

  5. If y = tan^(-1).(1)/(2) + tan^(-1) b, (0 b lt 1) and 0 lt y le (pi)/(4...

    Text Solution

    |

  6. If x , y , z are natural numbers such that cot^(-1)x+cot^(-1)y=cot^(-1...

    Text Solution

    |

  7. The value of alpha such that sin^(-1)2/(sqrt(5)),sin^(-1)3/(sqrt(10)),...

    Text Solution

    |

  8. The number of solution of the equation tan^(-1) (1 + x) + tan^(-1) (1 ...

    Text Solution

    |

  9. Arithmetic mean of the non-zero solutions of the equation tan^-1 (1/(2...

    Text Solution

    |

  10. If cot^(-1)x+cot^(-1)y+cot^(-1)z=pi/2,x , y , z >0a n dx y<1, then x+y...

    Text Solution

    |

  11. If x^2+y^2+z^2=r^2,t h e ntan^(-1)((x y)/(z r))+tan^(-1)((y z)/(x r))+...

    Text Solution

    |

  12. The value of tan^(-1)((xcostheta)/(1-xsintheta))-cot^(-1)((costheta)/(...

    Text Solution

    |

  13. if cot^(-1)[sqrt(cosalpha)]-tan^(-1)[sqrt(cosalpha)]=x then sinx is eq...

    Text Solution

    |

  14. sum(r =1)^(n) sin^(-1) ((sqrtr - sqrt(r -1))/(sqrtr(r + 1))) is equal...

    Text Solution

    |

  15. sum(m=1)^(n) tan^(-1) ((2m)/(m^(4) + m^(2) + 2)) is equal to

    Text Solution

    |

  16. The value of tan^(-1).(4)/(7) + tan^(-1).(4)/(19) + tan^(-1).(4)/(39) ...

    Text Solution

    |

  17. The sum of series sec^(-1)sqrt(2)+sec^(-1)(sqrt(10))/3+sec^(-1)(sqrt(5...

    Text Solution

    |

  18. If (1)/(2) sin^(-1) [(3 sin 2 theta)/(5 + 4 cos 2 theta)] = tan^(-1) x...

    Text Solution

    |

  19. The value 2tan^(-1)[sqrt((a-b)/(a+b)tantheta/2)] is equal to cos^(-1)(...

    Text Solution

    |

  20. If sin^(-1) ((2a)/(1+a^2))+ sin^(-1) ((2b)/(1+b^2)) = 2 tan^(-1)x then...

    Text Solution

    |