Home
Class 12
MATHS
The value of alpha such that sin^(-1)2/(...

The value of `alpha` such that `sin^(-1)2/(sqrt(5)),sin^(-1)3/(sqrt(10)),sin^(-1)alpha` are the angles of a triangle is `(-1)/(sqrt(2))` (b) `1/2` (c) `1/(sqrt(3))` (d) `1/(sqrt(2))`

A

`(-1)/(sqrt2)`

B

`(1)/(2)`

C

`(1)/(sqrt3)`

D

`(1)/(sqrt2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of `alpha` such that `sin^(-1)(2/sqrt(5))`, `sin^(-1)(3/sqrt(10))`, and `sin^(-1)(alpha)` are the angles of a triangle, we can follow these steps: ### Step 1: Understand the Triangle Angle Sum Property The sum of the angles in a triangle is equal to \( \pi \) radians (or 180 degrees). Therefore, we can write: \[ \sin^{-1}\left(\frac{2}{\sqrt{5}}\right) + \sin^{-1}\left(\frac{3}{\sqrt{10}}\right) + \sin^{-1}(\alpha) = \pi \] ### Step 2: Use the Identity for Sine Inverse We can use the identity for the sine inverse function: \[ \sin^{-1}(x) = \tan^{-1}\left(\frac{x}{\sqrt{1-x^2}}\right) \] This means we can convert each sine inverse into a tangent inverse. ### Step 3: Convert Each Term For \( \sin^{-1}\left(\frac{2}{\sqrt{5}}\right) \): \[ \sin^{-1}\left(\frac{2}{\sqrt{5}}\right) = \tan^{-1}\left(\frac{\frac{2}{\sqrt{5}}}{\sqrt{1 - \left(\frac{2}{\sqrt{5}}\right)^2}}\right) \] Calculating \( \sqrt{1 - \left(\frac{2}{\sqrt{5}}\right)^2} \): \[ \sqrt{1 - \frac{4}{5}} = \sqrt{\frac{1}{5}} = \frac{1}{\sqrt{5}} \] Thus, \[ \sin^{-1}\left(\frac{2}{\sqrt{5}}\right) = \tan^{-1}\left(\frac{2/\sqrt{5}}{1/\sqrt{5}}\right) = \tan^{-1}(2) \] For \( \sin^{-1}\left(\frac{3}{\sqrt{10}}\right) \): \[ \sin^{-1}\left(\frac{3}{\sqrt{10}}\right) = \tan^{-1}\left(\frac{\frac{3}{\sqrt{10}}}{\sqrt{1 - \left(\frac{3}{\sqrt{10}}\right)^2}}\right) \] Calculating \( \sqrt{1 - \left(\frac{3}{\sqrt{10}}\right)^2} \): \[ \sqrt{1 - \frac{9}{10}} = \sqrt{\frac{1}{10}} = \frac{1}{\sqrt{10}} \] Thus, \[ \sin^{-1}\left(\frac{3}{\sqrt{10}}\right) = \tan^{-1}\left(\frac{3/\sqrt{10}}{1/\sqrt{10}}\right) = \tan^{-1}(3) \] ### Step 4: Substitute Back into the Angle Sum Equation Now substituting back into the equation: \[ \tan^{-1}(2) + \tan^{-1}(3) + \sin^{-1}(\alpha) = \pi \] ### Step 5: Use the Tangent Addition Formula Using the formula for the tangent of the sum: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) \] where \( a = 2 \) and \( b = 3 \): \[ \tan^{-1}(2) + \tan^{-1}(3) = \tan^{-1}\left(\frac{2 + 3}{1 - 2 \cdot 3}\right) = \tan^{-1}\left(\frac{5}{1 - 6}\right) = \tan^{-1}\left(-\frac{5}{5}\right) = \tan^{-1}(-1) = -\frac{\pi}{4} \] ### Step 6: Solve for \( \sin^{-1}(\alpha) \) Now, substituting back: \[ -\frac{\pi}{4} + \sin^{-1}(\alpha) = \pi \] Rearranging gives: \[ \sin^{-1}(\alpha) = \pi + \frac{\pi}{4} = \frac{5\pi}{4} \] This is not possible since \( \sin^{-1}(\alpha) \) must be between \(-\frac{\pi}{2}\) and \(\frac{\pi}{2}\). Thus we need to consider the properties of angles in a triangle. ### Step 7: Find \( \alpha \) Using the sine addition formula: \[ \sin^{-1}(\alpha) = \pi - \left(\tan^{-1}(2) + \tan^{-1}(3)\right) \] This means: \[ \alpha = \sin\left(\pi - \left(\tan^{-1}(2) + \tan^{-1}(3)\right)\right) = \sin\left(\tan^{-1}(2) + \tan^{-1}(3)\right) \] Using the sine addition formula: \[ \sin(A + B) = \sin A \cos B + \cos A \sin B \] Where \( A = \tan^{-1}(2) \) and \( B = \tan^{-1}(3) \): \[ \sin A = \frac{2}{\sqrt{5}}, \quad \cos A = \frac{1}{\sqrt{5}}, \quad \sin B = \frac{3}{\sqrt{10}}, \quad \cos B = \frac{1}{\sqrt{10}} \] Thus: \[ \alpha = \frac{2}{\sqrt{5}} \cdot \frac{1}{\sqrt{10}} + \frac{3}{\sqrt{10}} \cdot \frac{1}{\sqrt{5}} = \frac{2 + 3}{\sqrt{50}} = \frac{5}{\sqrt{50}} = \frac{5}{5\sqrt{2}} = \frac{1}{\sqrt{2}} \] ### Final Answer Thus, the value of \( \alpha \) is: \[ \alpha = \frac{1}{\sqrt{2}} \]

To find the value of `alpha` such that `sin^(-1)(2/sqrt(5))`, `sin^(-1)(3/sqrt(10))`, and `sin^(-1)(alpha)` are the angles of a triangle, we can follow these steps: ### Step 1: Understand the Triangle Angle Sum Property The sum of the angles in a triangle is equal to \( \pi \) radians (or 180 degrees). Therefore, we can write: \[ \sin^{-1}\left(\frac{2}{\sqrt{5}}\right) + \sin^{-1}\left(\frac{3}{\sqrt{10}}\right) + \sin^{-1}(\alpha) = \pi \] ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked comprehension type|16 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.6|9 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

sin^(-1)(1/2)-2sin^(-1)(1/(sqrt(2)))

Show that "sin"^(-1)(sqrt(3))/2+"tan"^(-1)1/(sqrt(3))=(2pi)/3

1. sin^(-1)((1)/(sqrt(2))) 2. cos^(-1)((sqrt(3))/(2))

Show that 4sin27^0=(5+sqrt(5))^(1/2)-(3-sqrt(5))^(1/2)

The value of sin^(-1){cot(sin^(-1)(sqrt((2-sqrt3)/4)+cos^(-1)(sqrt(12)/4)+sec^(-1)sqrt2)} is

If 4\ cos^(-1)x+sin^(-1)x=pi , then the value of x is (a) 3/2 (b) 1/(sqrt(2)) (c) (sqrt(3))/2 (d) 2/(sqrt(3))

The value of expression tan^(- 1)((sqrt(2))/2)+sin^(- 1)((sqrt(5))/5)-cos^(- 1)((sqrt(10))/10)

The value of sin(1/4sin^(-1)((sqrt(63))/8)) is (a) 1/(sqrt(2)) (b) 1/(sqrt(3)) (c) 1/(2sqrt(2)) (d) 1/(3sqrt(3))

If alpha = sin^(-1)(sqrt(3)/2)+sin^(-1)(1/3) , beta =cos ^(-1)(sqrt(3)/2)+cos^(-1)(1/3) then

sin(A+B)=1/sqrt(2) cos(A-B)=sqrt3|2

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Single correct
  1. If y = tan^(-1).(1)/(2) + tan^(-1) b, (0 b lt 1) and 0 lt y le (pi)/(4...

    Text Solution

    |

  2. If x , y , z are natural numbers such that cot^(-1)x+cot^(-1)y=cot^(-1...

    Text Solution

    |

  3. The value of alpha such that sin^(-1)2/(sqrt(5)),sin^(-1)3/(sqrt(10)),...

    Text Solution

    |

  4. The number of solution of the equation tan^(-1) (1 + x) + tan^(-1) (1 ...

    Text Solution

    |

  5. Arithmetic mean of the non-zero solutions of the equation tan^-1 (1/(2...

    Text Solution

    |

  6. If cot^(-1)x+cot^(-1)y+cot^(-1)z=pi/2,x , y , z >0a n dx y<1, then x+y...

    Text Solution

    |

  7. If x^2+y^2+z^2=r^2,t h e ntan^(-1)((x y)/(z r))+tan^(-1)((y z)/(x r))+...

    Text Solution

    |

  8. The value of tan^(-1)((xcostheta)/(1-xsintheta))-cot^(-1)((costheta)/(...

    Text Solution

    |

  9. if cot^(-1)[sqrt(cosalpha)]-tan^(-1)[sqrt(cosalpha)]=x then sinx is eq...

    Text Solution

    |

  10. sum(r =1)^(n) sin^(-1) ((sqrtr - sqrt(r -1))/(sqrtr(r + 1))) is equal...

    Text Solution

    |

  11. sum(m=1)^(n) tan^(-1) ((2m)/(m^(4) + m^(2) + 2)) is equal to

    Text Solution

    |

  12. The value of tan^(-1).(4)/(7) + tan^(-1).(4)/(19) + tan^(-1).(4)/(39) ...

    Text Solution

    |

  13. The sum of series sec^(-1)sqrt(2)+sec^(-1)(sqrt(10))/3+sec^(-1)(sqrt(5...

    Text Solution

    |

  14. If (1)/(2) sin^(-1) [(3 sin 2 theta)/(5 + 4 cos 2 theta)] = tan^(-1) x...

    Text Solution

    |

  15. The value 2tan^(-1)[sqrt((a-b)/(a+b)tantheta/2)] is equal to cos^(-1)(...

    Text Solution

    |

  16. If sin^(-1) ((2a)/(1+a^2))+ sin^(-1) ((2b)/(1+b^2)) = 2 tan^(-1)x then...

    Text Solution

    |

  17. If 3\ sin^(-1)((2x)/(1+x^2))-4\ cos^(-1)((1-x^2)/(1+x^2))+2\ tan^(-1)(...

    Text Solution

    |

  18. If x(1) = 2 tan^(-1) ((1 + x)/(1 -x)), x(2) = sin^(-1) ((1 - x^(2))/(1...

    Text Solution

    |

  19. If the equation x^3+b x^2+c x+1=0,(b<c), has only one real rootalpha ,...

    Text Solution

    |

  20. The value of sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^2)] is equal to

    Text Solution

    |