Home
Class 12
MATHS
Arithmetic mean of the non-zero solution...

Arithmetic mean of the non-zero solutions of the equation `tan^-1 (1/(2x + 1)) + tan^-1 (1/(4x + 1)) = tan^-1 (2/x^2)`

A

2

B

3

C

4

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan^{-1} \left( \frac{1}{2x + 1} \right) + \tan^{-1} \left( \frac{1}{4x + 1} \right) = \tan^{-1} \left( \frac{2}{x^2} \right) \), we will follow these steps: ### Step 1: Use the formula for the sum of arctangents We can use the formula for the sum of two arctangents: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1} \left( \frac{a + b}{1 - ab} \right) \quad \text{if } ab < 1 \] Let \( a = \frac{1}{2x + 1} \) and \( b = \frac{1}{4x + 1} \). ### Step 2: Calculate \( a + b \) and \( ab \) Calculating \( a + b \): \[ a + b = \frac{1}{2x + 1} + \frac{1}{4x + 1} = \frac{(4x + 1) + (2x + 1)}{(2x + 1)(4x + 1)} = \frac{6x + 2}{(2x + 1)(4x + 1)} \] Calculating \( ab \): \[ ab = \frac{1}{(2x + 1)(4x + 1)} \] ### Step 3: Substitute into the formula Now, substituting into the formula: \[ \tan^{-1} \left( \frac{6x + 2}{(2x + 1)(4x + 1) - 1} \right) = \tan^{-1} \left( \frac{2}{x^2} \right) \] ### Step 4: Set the arguments equal Since the arctangents are equal, we can set the arguments equal to each other: \[ \frac{6x + 2}{(2x + 1)(4x + 1) - 1} = \frac{2}{x^2} \] ### Step 5: Cross-multiply Cross-multiplying gives: \[ (6x + 2)x^2 = 2((2x + 1)(4x + 1) - 1) \] ### Step 6: Simplify the equation Expanding both sides: - Left side: \( 6x^3 + 2x^2 \) - Right side: \( 2(8x^2 + 6x + 1 - 1) = 16x^2 + 12x \) Setting the equation: \[ 6x^3 + 2x^2 = 16x^2 + 12x \] Rearranging gives: \[ 6x^3 - 14x^2 - 12x = 0 \] ### Step 7: Factor the polynomial Factoring out \( 2x \): \[ 2x(3x^2 - 7x - 6) = 0 \] This gives us \( x = 0 \) or solving \( 3x^2 - 7x - 6 = 0 \). ### Step 8: Solve the quadratic equation Using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{7 \pm \sqrt{(-7)^2 - 4 \cdot 3 \cdot (-6)}}{2 \cdot 3} \] Calculating the discriminant: \[ 49 + 72 = 121 \quad \Rightarrow \quad \sqrt{121} = 11 \] Thus: \[ x = \frac{7 \pm 11}{6} \] Calculating the two possible values: 1. \( x = \frac{18}{6} = 3 \) 2. \( x = \frac{-4}{6} = -\frac{2}{3} \) ### Step 9: Identify non-zero solutions The non-zero solutions are \( x = 3 \) and \( x = -\frac{2}{3} \). ### Step 10: Calculate the arithmetic mean The arithmetic mean of the non-zero solutions: \[ \text{Mean} = \frac{3 + \left(-\frac{2}{3}\right)}{2} = \frac{3 - \frac{2}{3}}{2} = \frac{\frac{9}{3} - \frac{2}{3}}{2} = \frac{\frac{7}{3}}{2} = \frac{7}{6} \] Thus, the arithmetic mean of the non-zero solutions is \( \frac{7}{6} \). ---

To solve the equation \( \tan^{-1} \left( \frac{1}{2x + 1} \right) + \tan^{-1} \left( \frac{1}{4x + 1} \right) = \tan^{-1} \left( \frac{2}{x^2} \right) \), we will follow these steps: ### Step 1: Use the formula for the sum of arctangents We can use the formula for the sum of two arctangents: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1} \left( \frac{a + b}{1 - ab} \right) \quad \text{if } ab < 1 \] Let \( a = \frac{1}{2x + 1} \) and \( b = \frac{1}{4x + 1} \). ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked comprehension type|16 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.6|9 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

The number of solution of the equation tan^(-1) (1 + x) + tan^(-1) (1 -x) = (pi)/(2) is

Solve tan^-1(1/(1+2x))+tan^-1(1/(1+4x))=tan^-1(2/x^2)

Number of solutions of the equation tan^(-1)((1)/(a-1))=tan^(-1)((1)/(x))+tan^(-1)((1)/(a^(2)-x+1)) is :

Solve the equation tan^(-1)((x+1)/(x-1))+tan^(-1)((x-1)/x)=tan^(-1)(-7)

Number of solution(s) of the equation 2tan^(-1)(2x-1)=cos^(-1)(x) is :

The number of positive solution satisfying the equation tan^(-1)((1)/(2x+1))+tan^(-1)((1)/(4x+1))=tan^(-1)(2/(x^2)) is

Solve the equation: tan^-1(2x)+tan^-1 {(3x)} =pi/4

The number of solutions of equation 2 tan^(-1)(x + 1) = cos^(-1)(x/2) .

The solution set of the equation sin^(-1)x=2 tan^(-1)x is

Solve the equation tan^(-1) 2x + tan^(-1) 3x = pi//4

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Single correct
  1. The value of alpha such that sin^(-1)2/(sqrt(5)),sin^(-1)3/(sqrt(10)),...

    Text Solution

    |

  2. The number of solution of the equation tan^(-1) (1 + x) + tan^(-1) (1 ...

    Text Solution

    |

  3. Arithmetic mean of the non-zero solutions of the equation tan^-1 (1/(2...

    Text Solution

    |

  4. If cot^(-1)x+cot^(-1)y+cot^(-1)z=pi/2,x , y , z >0a n dx y<1, then x+y...

    Text Solution

    |

  5. If x^2+y^2+z^2=r^2,t h e ntan^(-1)((x y)/(z r))+tan^(-1)((y z)/(x r))+...

    Text Solution

    |

  6. The value of tan^(-1)((xcostheta)/(1-xsintheta))-cot^(-1)((costheta)/(...

    Text Solution

    |

  7. if cot^(-1)[sqrt(cosalpha)]-tan^(-1)[sqrt(cosalpha)]=x then sinx is eq...

    Text Solution

    |

  8. sum(r =1)^(n) sin^(-1) ((sqrtr - sqrt(r -1))/(sqrtr(r + 1))) is equal...

    Text Solution

    |

  9. sum(m=1)^(n) tan^(-1) ((2m)/(m^(4) + m^(2) + 2)) is equal to

    Text Solution

    |

  10. The value of tan^(-1).(4)/(7) + tan^(-1).(4)/(19) + tan^(-1).(4)/(39) ...

    Text Solution

    |

  11. The sum of series sec^(-1)sqrt(2)+sec^(-1)(sqrt(10))/3+sec^(-1)(sqrt(5...

    Text Solution

    |

  12. If (1)/(2) sin^(-1) [(3 sin 2 theta)/(5 + 4 cos 2 theta)] = tan^(-1) x...

    Text Solution

    |

  13. The value 2tan^(-1)[sqrt((a-b)/(a+b)tantheta/2)] is equal to cos^(-1)(...

    Text Solution

    |

  14. If sin^(-1) ((2a)/(1+a^2))+ sin^(-1) ((2b)/(1+b^2)) = 2 tan^(-1)x then...

    Text Solution

    |

  15. If 3\ sin^(-1)((2x)/(1+x^2))-4\ cos^(-1)((1-x^2)/(1+x^2))+2\ tan^(-1)(...

    Text Solution

    |

  16. If x(1) = 2 tan^(-1) ((1 + x)/(1 -x)), x(2) = sin^(-1) ((1 - x^(2))/(1...

    Text Solution

    |

  17. If the equation x^3+b x^2+c x+1=0,(b<c), has only one real rootalpha ,...

    Text Solution

    |

  18. The value of sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^2)] is equal to

    Text Solution

    |

  19. If cos^(- 1)x-cos^(- 1)(y/2)=alpha then 4x^2-4xycosalpha+y^2=

    Text Solution

    |

  20. If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi,t h e nx^4+y^2+z^4+4x^2y^2z^2=K(x^...

    Text Solution

    |