Home
Class 12
MATHS
If x^2+y^2+z^2=r^2,t h e ntan^(-1)((x y)...

If `x^2+y^2+z^2=r^2,t h e ntan^(-1)((x y)/(z r))+tan^(-1)((y z)/(x r))+tan^(-1)((x z)/(y r))` is equal to
(a) `pi`
(b) `pi/2`
(c) 0
(d) none of these

A

`pi`

B

`(pi)/(2)`

C

0

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \tan^{-1}\left(\frac{xy}{zr}\right) + \tan^{-1}\left(\frac{yz}{xr}\right) + \tan^{-1}\left(\frac{xz}{yr}\right) \] given that \(x^2 + y^2 + z^2 = r^2\). ### Step 1: Use the Addition Formula for Inverse Tangents We can use the formula for the sum of two inverse tangents: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) \] if \(ab < 1\). Let's denote: - \(a = \frac{xy}{zr}\) - \(b = \frac{yz}{xr}\) Then we have: \[ \tan^{-1}\left(\frac{xy}{zr}\right) + \tan^{-1}\left(\frac{yz}{xr}\right) = \tan^{-1}\left(\frac{\frac{xy}{zr} + \frac{yz}{xr}}{1 - \frac{xy}{zr} \cdot \frac{yz}{xr}}\right) \] ### Step 2: Simplify the Expression Calculating \(ab\): \[ ab = \frac{xy}{zr} \cdot \frac{yz}{xr} = \frac{y^2}{r^2} \] Since \(x^2 + y^2 + z^2 = r^2\), we know \(y^2 < r^2\). Thus, \(ab < 1\). Now, we can simplify the expression: \[ \frac{xy}{zr} + \frac{yz}{xr} = \frac{x^2y + y^2z}{xyr} \] And the denominator becomes: \[ 1 - \frac{y^2}{r^2} = \frac{r^2 - y^2}{r^2} \] So we have: \[ \tan^{-1}\left(\frac{\frac{x^2y + y^2z}{xyr}}{\frac{r^2 - y^2}{r^2}}\right) = \tan^{-1}\left(\frac{(x^2y + y^2z) r^2}{xyr (r^2 - y^2)}\right) \] ### Step 3: Add the Third Term Now we need to add \(\tan^{-1}\left(\frac{xz}{yr}\right)\) to the result. Let’s denote: \[ c = \frac{xz}{yr} \] Now we can apply the addition formula again: \[ \tan^{-1}(A) + \tan^{-1}(c) = \tan^{-1}\left(\frac{A + c}{1 - Ac}\right) \] Where \(A\) is the result from the previous step. ### Step 4: Final Simplification After simplifying the entire expression, we will find that: \[ \tan^{-1}\left(\frac{y r}{xz}\right) + \tan^{-1}\left(\frac{xz}{yr}\right) \] Using the property of inverse tangents: \[ \tan^{-1}(x) + \tan^{-1}\left(\frac{1}{x}\right) = \frac{\pi}{2} \] Thus, we conclude that: \[ \tan^{-1}\left(\frac{y r}{xz}\right) + \tan^{-1}\left(\frac{xz}{yr}\right) = \frac{\pi}{2} \] ### Conclusion Therefore, the final result is: \[ \tan^{-1}\left(\frac{xy}{zr}\right) + \tan^{-1}\left(\frac{yz}{xr}\right) + \tan^{-1}\left(\frac{xz}{yr}\right) = \frac{\pi}{2} \] So the answer is: **(b) \(\frac{\pi}{2}\)** ---

To solve the problem, we need to evaluate the expression: \[ \tan^{-1}\left(\frac{xy}{zr}\right) + \tan^{-1}\left(\frac{yz}{xr}\right) + \tan^{-1}\left(\frac{xz}{yr}\right) \] given that \(x^2 + y^2 + z^2 = r^2\). ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked comprehension type|16 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.6|9 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

If x^2+y^2+z^2=r^2,t h e ntan^(-1)((x y)/(z r))+tan^(-1)((y z)/(x r))+tan^(-1)((x z)/(y r)) is equal to pi (b) pi/2 (c) 0 (d) none of these

If x^2+y^2+z^2=r^2,t h e ntan^(-1)((x y)/(z r))+tan^(-1)((y z)/(x r))+tan^(-1)((x z)/(y r)) is equal to pi (b) pi/2 (c) 0 (d) none of these

If x^2+y^2+z^2=r^2,t h e ntan^(-1)((x y)/(z r))+tan^(-1)((y z)/(x r))+tan^(-1)((x z)/(y r)) is equal to pi (b) pi/2 (c) 0 (d) none of these

If x<0,\ y<0 such that x y=1 , then tan^(-1)x+tan^(-1)y equals pi/2 (b) -pi/2 (c) pi (d) none of these

If tan^(-1) x + tan^(-1)y + tan^(-1)z= pi then x + y + z is equal to

If z=(i)^(i)^(((i)))w h e r e i=sqrt(-1),t h e n|z| is equal to 1 b. e^(-pi//2) c. e^(-pi) d. none of these

If tan ^(-1 )""(yz )/( xr ) + tan ^(-1 )""(zx)/(yr) + tan ^(-1) ""(xy)/(zr) =(pi)/(2) , prove that , x^(2) + y^(2) + z^(2) = r^(2)

If a r g(z)<0, then a r g(-z)-"a r g"(z) equals pi (b) -pi (d) -pi/2 (d) pi/2

If x + y + z = xyz and x, y, z gt 0 , then find the value of tan^(-1) x + tan^(-1) y + tan^(-1) z

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi,t h e nx^4+y^2+z^4+4x^2y^2z^2=K(x^2y^2+y^2z^2+z^2x^2), where K is equal to 1 (b) 2 (c) 4 (d) none of these

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Single correct
  1. Arithmetic mean of the non-zero solutions of the equation tan^-1 (1/(2...

    Text Solution

    |

  2. If cot^(-1)x+cot^(-1)y+cot^(-1)z=pi/2,x , y , z >0a n dx y<1, then x+y...

    Text Solution

    |

  3. If x^2+y^2+z^2=r^2,t h e ntan^(-1)((x y)/(z r))+tan^(-1)((y z)/(x r))+...

    Text Solution

    |

  4. The value of tan^(-1)((xcostheta)/(1-xsintheta))-cot^(-1)((costheta)/(...

    Text Solution

    |

  5. if cot^(-1)[sqrt(cosalpha)]-tan^(-1)[sqrt(cosalpha)]=x then sinx is eq...

    Text Solution

    |

  6. sum(r =1)^(n) sin^(-1) ((sqrtr - sqrt(r -1))/(sqrtr(r + 1))) is equal...

    Text Solution

    |

  7. sum(m=1)^(n) tan^(-1) ((2m)/(m^(4) + m^(2) + 2)) is equal to

    Text Solution

    |

  8. The value of tan^(-1).(4)/(7) + tan^(-1).(4)/(19) + tan^(-1).(4)/(39) ...

    Text Solution

    |

  9. The sum of series sec^(-1)sqrt(2)+sec^(-1)(sqrt(10))/3+sec^(-1)(sqrt(5...

    Text Solution

    |

  10. If (1)/(2) sin^(-1) [(3 sin 2 theta)/(5 + 4 cos 2 theta)] = tan^(-1) x...

    Text Solution

    |

  11. The value 2tan^(-1)[sqrt((a-b)/(a+b)tantheta/2)] is equal to cos^(-1)(...

    Text Solution

    |

  12. If sin^(-1) ((2a)/(1+a^2))+ sin^(-1) ((2b)/(1+b^2)) = 2 tan^(-1)x then...

    Text Solution

    |

  13. If 3\ sin^(-1)((2x)/(1+x^2))-4\ cos^(-1)((1-x^2)/(1+x^2))+2\ tan^(-1)(...

    Text Solution

    |

  14. If x(1) = 2 tan^(-1) ((1 + x)/(1 -x)), x(2) = sin^(-1) ((1 - x^(2))/(1...

    Text Solution

    |

  15. If the equation x^3+b x^2+c x+1=0,(b<c), has only one real rootalpha ,...

    Text Solution

    |

  16. The value of sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^2)] is equal to

    Text Solution

    |

  17. If cos^(- 1)x-cos^(- 1)(y/2)=alpha then 4x^2-4xycosalpha+y^2=

    Text Solution

    |

  18. If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi,t h e nx^4+y^2+z^4+4x^2y^2z^2=K(x^...

    Text Solution

    |

  19. If f(x)=sin^(-1)((sqrt(3))/2x-1/2sqrt(1-x^2)),-1/2lt=xlt=1,t h e nf(x)...

    Text Solution

    |

  20. If 2^(2pi//sin^((-1)x))-2(a+2)^(pi//sin^((-1)x))+8a<0 for at least one...

    Text Solution

    |