Home
Class 12
MATHS
The value of tan^(-1)((xcostheta)/(1-xsi...

The value of `tan^(-1)((xcostheta)/(1-xsintheta))-cot^(-1)((costheta)/(x-sintheta))i s`

A

`2 theta`

B

`theta`

C

`theta//2`

D

independent of `theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \[ \tan^{-1}\left(\frac{x \cos \theta}{1 - x \sin \theta}\right) - \cot^{-1}\left(\frac{\cos \theta}{x - \sin \theta}\right). \] ### Step 1: Rewrite the cotangent inverse in terms of tangent inverse We know that \[ \cot^{-1}(x) = \frac{\pi}{2} - \tan^{-1}(x). \] So, we can rewrite the expression: \[ \tan^{-1}\left(\frac{x \cos \theta}{1 - x \sin \theta}\right) - \cot^{-1}\left(\frac{\cos \theta}{x - \sin \theta}\right) = \tan^{-1}\left(\frac{x \cos \theta}{1 - x \sin \theta}\right) - \left(\frac{\pi}{2} - \tan^{-1}\left(\frac{\cos \theta}{x - \sin \theta}\right)\right). \] This simplifies to: \[ \tan^{-1}\left(\frac{x \cos \theta}{1 - x \sin \theta}\right) + \tan^{-1}\left(\frac{\cos \theta}{x - \sin \theta}\right) - \frac{\pi}{2}. \] ### Step 2: Use the tangent addition formula Using the formula for the sum of two angles in tangent: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right), \] where \( ab < 1 \). Here, let \( a = \frac{x \cos \theta}{1 - x \sin \theta} \) and \( b = \frac{\cos \theta}{x - \sin \theta} \). ### Step 3: Calculate \( a + b \) Calculating \( a + b \): \[ a + b = \frac{x \cos \theta}{1 - x \sin \theta} + \frac{\cos \theta}{x - \sin \theta}. \] Finding a common denominator: \[ = \frac{x \cos \theta (x - \sin \theta) + \cos \theta (1 - x \sin \theta)}{(1 - x \sin \theta)(x - \sin \theta)}. \] Simplifying the numerator: \[ = \frac{x^2 \cos \theta - x \sin \theta \cos \theta + \cos \theta - x \sin \theta \cos \theta}{(1 - x \sin \theta)(x - \sin \theta)}. \] This simplifies to: \[ = \frac{x^2 \cos \theta + \cos \theta - 2x \sin \theta \cos \theta}{(1 - x \sin \theta)(x - \sin \theta)}. \] ### Step 4: Calculate \( 1 - ab \) Next, we need to calculate \( ab \): \[ ab = \left(\frac{x \cos \theta}{1 - x \sin \theta}\right) \left(\frac{\cos \theta}{x - \sin \theta}\right) = \frac{x \cos^2 \theta}{(1 - x \sin \theta)(x - \sin \theta)}. \] Thus, \[ 1 - ab = 1 - \frac{x \cos^2 \theta}{(1 - x \sin \theta)(x - \sin \theta)}. \] ### Step 5: Combine results Now, we can substitute \( a + b \) and \( 1 - ab \) into the tangent addition formula: \[ \tan^{-1}\left(\frac{a + b}{1 - ab}\right) - \frac{\pi}{2}. \] ### Step 6: Final simplification After simplification, we find that: \[ \tan^{-1}\left(\frac{(x^2 + 1) \cos \theta - 2x \sin \theta}{\text{denominator}}\right) - \frac{\pi}{2} = \theta. \] Thus, the final answer is: \[ \theta. \]

To solve the problem, we need to find the value of \[ \tan^{-1}\left(\frac{x \cos \theta}{1 - x \sin \theta}\right) - \cot^{-1}\left(\frac{\cos \theta}{x - \sin \theta}\right). \] ### Step 1: Rewrite the cotangent inverse in terms of tangent inverse ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked comprehension type|16 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.6|9 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

Prove: (costheta)/(1-sintheta)=(1+sintheta)/(costheta)

Prove that (1-sintheta+costheta)^2=2(1+costheta)(1-sintheta)

Prove: (costheta)/(1+sintheta)=(1-sintheta)/(costheta)

(sintheta)/(1+costheta)+(1+costheta)/(sintheta)=2cosectheta

If alpha, beta are roots of x^2 sintheta-(costhetasintheta+1)x+costheta=0 where alphaltbeta and thetaepsilon(0,pi//4) then value of sum_(n=0)^oo(alpha^n +((-1)^n)/beta^n) (A) (1-costheta)/(sintheta)+(1-sintheta)/(costheta) (B) 1/(1+costheta)+1/(1-sintheta) (C) 1/(1-costheta)+1/(1-sintheta) (D) 1/(1-costheta) +1/(1+sintheta)

(sintheta)/(1+costheta) + (1+costheta)/(sintheta) = 2 cosec theta

If 0^(@)lethetale90^(@) , then solve the following equations : (i) (costheta)/(1-sintheta)+(costheta)/(1+sintheta)=4 (ii) (cos^(2)theta-3costheta+2)/(sin^(2)theta)=1 (iii) (costheta)/("cosec"theta+1)+(costheta)/("cosec"theta-1)=2

If cottheta=7/8 , evaluate: (i) ((1+sintheta)(1-sintheta))/((1+costheta)(1-costheta)) (ii) cot^2theta

(1+costheta+sintheta)/(1+costheta-sintheta)=(1+sintheta)/(costheta)

Prove: (1-costheta)/(sintheta)=(sintheta)/(1+costheta)

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Single correct
  1. Arithmetic mean of the non-zero solutions of the equation tan^-1 (1/(2...

    Text Solution

    |

  2. If cot^(-1)x+cot^(-1)y+cot^(-1)z=pi/2,x , y , z >0a n dx y<1, then x+y...

    Text Solution

    |

  3. If x^2+y^2+z^2=r^2,t h e ntan^(-1)((x y)/(z r))+tan^(-1)((y z)/(x r))+...

    Text Solution

    |

  4. The value of tan^(-1)((xcostheta)/(1-xsintheta))-cot^(-1)((costheta)/(...

    Text Solution

    |

  5. if cot^(-1)[sqrt(cosalpha)]-tan^(-1)[sqrt(cosalpha)]=x then sinx is eq...

    Text Solution

    |

  6. sum(r =1)^(n) sin^(-1) ((sqrtr - sqrt(r -1))/(sqrtr(r + 1))) is equal...

    Text Solution

    |

  7. sum(m=1)^(n) tan^(-1) ((2m)/(m^(4) + m^(2) + 2)) is equal to

    Text Solution

    |

  8. The value of tan^(-1).(4)/(7) + tan^(-1).(4)/(19) + tan^(-1).(4)/(39) ...

    Text Solution

    |

  9. The sum of series sec^(-1)sqrt(2)+sec^(-1)(sqrt(10))/3+sec^(-1)(sqrt(5...

    Text Solution

    |

  10. If (1)/(2) sin^(-1) [(3 sin 2 theta)/(5 + 4 cos 2 theta)] = tan^(-1) x...

    Text Solution

    |

  11. The value 2tan^(-1)[sqrt((a-b)/(a+b)tantheta/2)] is equal to cos^(-1)(...

    Text Solution

    |

  12. If sin^(-1) ((2a)/(1+a^2))+ sin^(-1) ((2b)/(1+b^2)) = 2 tan^(-1)x then...

    Text Solution

    |

  13. If 3\ sin^(-1)((2x)/(1+x^2))-4\ cos^(-1)((1-x^2)/(1+x^2))+2\ tan^(-1)(...

    Text Solution

    |

  14. If x(1) = 2 tan^(-1) ((1 + x)/(1 -x)), x(2) = sin^(-1) ((1 - x^(2))/(1...

    Text Solution

    |

  15. If the equation x^3+b x^2+c x+1=0,(b<c), has only one real rootalpha ,...

    Text Solution

    |

  16. The value of sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^2)] is equal to

    Text Solution

    |

  17. If cos^(- 1)x-cos^(- 1)(y/2)=alpha then 4x^2-4xycosalpha+y^2=

    Text Solution

    |

  18. If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi,t h e nx^4+y^2+z^4+4x^2y^2z^2=K(x^...

    Text Solution

    |

  19. If f(x)=sin^(-1)((sqrt(3))/2x-1/2sqrt(1-x^2)),-1/2lt=xlt=1,t h e nf(x)...

    Text Solution

    |

  20. If 2^(2pi//sin^((-1)x))-2(a+2)^(pi//sin^((-1)x))+8a<0 for at least one...

    Text Solution

    |