Home
Class 12
MATHS
if cot^(-1)[sqrt(cosalpha)]-tan^(-1)[sqr...

if `cot^(-1)[sqrt(cosalpha)]-tan^(-1)[sqrt(cosalpha)]=x` then `sinx` is equal to

A

`tan^(2).(alpha)/(2)`

B

`cot^(2).(alpha)/(2)`

C

`tan alpha`

D

`cot.(alpha)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( \sin x \) given that \[ \cot^{-1}(\sqrt{\cos \alpha}) - \tan^{-1}(\sqrt{\cos \alpha}) = x. \] ### Step 1: Rewrite the expression using the tangent function We can rewrite \( \cot^{-1}(y) \) in terms of \( \tan^{-1}(y) \): \[ \cot^{-1}(y) = \frac{\pi}{2} - \tan^{-1}(y). \] Thus, we have: \[ \cot^{-1}(\sqrt{\cos \alpha}) = \frac{\pi}{2} - \tan^{-1}(\sqrt{\cos \alpha}). \] Substituting this into our equation gives: \[ \left(\frac{\pi}{2} - \tan^{-1}(\sqrt{\cos \alpha})\right) - \tan^{-1}(\sqrt{\cos \alpha}) = x. \] ### Step 2: Simplify the expression This simplifies to: \[ \frac{\pi}{2} - 2\tan^{-1}(\sqrt{\cos \alpha}) = x. \] ### Step 3: Solve for \( \tan^{-1}(\sqrt{\cos \alpha}) \) Rearranging gives: \[ \tan^{-1}(\sqrt{\cos \alpha}) = \frac{\pi}{4} - \frac{x}{2}. \] ### Step 4: Find \( \tan x \) Taking the tangent of both sides, we have: \[ \tan\left(\tan^{-1}(\sqrt{\cos \alpha})\right) = \tan\left(\frac{\pi}{4} - \frac{x}{2}\right). \] This leads to: \[ \sqrt{\cos \alpha} = \tan\left(\frac{\pi}{4} - \frac{x}{2}\right). \] Using the tangent subtraction formula: \[ \tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}, \] where \( A = \frac{\pi}{4} \) and \( B = \frac{x}{2} \), we have: \[ \tan\left(\frac{\pi}{4}\right) = 1 \quad \text{and} \quad \tan\left(\frac{x}{2}\right) = t. \] Substituting these into the formula gives: \[ \sqrt{\cos \alpha} = \frac{1 - t}{1 + t}. \] ### Step 5: Solve for \( t \) Cross-multiplying yields: \[ \sqrt{\cos \alpha}(1 + t) = 1 - t. \] Rearranging gives: \[ \sqrt{\cos \alpha} + \sqrt{\cos \alpha} t = 1 - t. \] Combining like terms results in: \[ t(\sqrt{\cos \alpha} + 1) = 1 - \sqrt{\cos \alpha}. \] Thus, \[ t = \frac{1 - \sqrt{\cos \alpha}}{1 + \sqrt{\cos \alpha}}. \] ### Step 6: Find \( \sin x \) Now, we know: \[ \tan\left(\frac{x}{2}\right) = t = \frac{1 - \sqrt{\cos \alpha}}{1 + \sqrt{\cos \alpha}}. \] Using the identity \( \sin x = \frac{2 \tan\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)} \): Let \( \tan\left(\frac{x}{2}\right) = t \): \[ \sin x = \frac{2t}{1 + t^2}. \] Substituting \( t \): \[ \sin x = \frac{2\left(\frac{1 - \sqrt{\cos \alpha}}{1 + \sqrt{\cos \alpha}}\right)}{1 + \left(\frac{1 - \sqrt{\cos \alpha}}{1 + \sqrt{\cos \alpha}}\right)^2}. \] ### Step 7: Simplify the expression After simplification, using the half-angle formulas: \[ \sin x = \frac{2 \sin^2\left(\frac{\alpha}{2}\right)}{2 \cos^2\left(\frac{\alpha}{2}\right)} = \tan^2\left(\frac{\alpha}{2}\right). \] Thus, we conclude that: \[ \sin x = \tan^2\left(\frac{\alpha}{2}\right). \] ### Final Answer The final answer is: \[ \sin x = \tan^2\left(\frac{\alpha}{2}\right). \]

To solve the problem, we need to find \( \sin x \) given that \[ \cot^{-1}(\sqrt{\cos \alpha}) - \tan^{-1}(\sqrt{\cos \alpha}) = x. \] ### Step 1: Rewrite the expression using the tangent function ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked comprehension type|16 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.6|9 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

cot^(-1)sqrt(x)

If cot^(-1)(sqrt(cosalpha))-tan^(-1)(sqrt(cosalpha))=x , then sinx is tan^2alpha/2 (b) cot^2alpha/2 (c) tan^2alpha (d) cotalpha/2

If u=cot^-1 sqrt(tanalpha)-tan^-1 sqrt(tan alpha), then tan(pi/4-u/2) is equal to (a) sqrt(tan alpha) (b) sqrt(cos alpha) (c) tan alpha (d) cot alpha

If u=cot^-1 sqrt(tanalpha)-tan^-1 sqrt(tan alpha), then tan(pi/4-u/2) is equal to (a) sqrt(tan alpha) (b) sqrt(cos alpha) (c) tan alpha (d) cot alpha

If u=cot^(-1)sqrt(tanalpha)-tan^(-1)sqrt(tanalpha),t h e n tan(pi/4- u/2) is (a) sqrt(tanalpha) (b) sqrt(cotalpha) (c) tanalpha (d) cot alpha

If y=cot^(-1)(sqrt(cos"x"))-tan^(-1)(sqrt(cos"x")), prove that siny=tan^2x/2

If y=cot^(-1)(sqrt(cos"x"))-tan^(-1)(sqrt(cos"x")), prove that siny=tan^2x/2

If piltalphalt(3pi)/2lt" then "sqrt((1-cosalpha)/(1+cosalpha))+sqrt((1+cosalpha)/(1-cosalpha)) is equal to

If π<α<3π2 then sqrt((1-cosalpha)/(1+cosalpha))+sqrt((1+cosalpha)/(1-cosalpha)) is equal to (a) 2/(sinalpha) (b) -2/(sinalpha) (c) 1/(sinalpha) (d) -1/(sinalpha)

int_(0)^(alpha)(1)/(cosx+cosalpha)dx is equal to

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Single correct
  1. Arithmetic mean of the non-zero solutions of the equation tan^-1 (1/(2...

    Text Solution

    |

  2. If cot^(-1)x+cot^(-1)y+cot^(-1)z=pi/2,x , y , z >0a n dx y<1, then x+y...

    Text Solution

    |

  3. If x^2+y^2+z^2=r^2,t h e ntan^(-1)((x y)/(z r))+tan^(-1)((y z)/(x r))+...

    Text Solution

    |

  4. The value of tan^(-1)((xcostheta)/(1-xsintheta))-cot^(-1)((costheta)/(...

    Text Solution

    |

  5. if cot^(-1)[sqrt(cosalpha)]-tan^(-1)[sqrt(cosalpha)]=x then sinx is eq...

    Text Solution

    |

  6. sum(r =1)^(n) sin^(-1) ((sqrtr - sqrt(r -1))/(sqrtr(r + 1))) is equal...

    Text Solution

    |

  7. sum(m=1)^(n) tan^(-1) ((2m)/(m^(4) + m^(2) + 2)) is equal to

    Text Solution

    |

  8. The value of tan^(-1).(4)/(7) + tan^(-1).(4)/(19) + tan^(-1).(4)/(39) ...

    Text Solution

    |

  9. The sum of series sec^(-1)sqrt(2)+sec^(-1)(sqrt(10))/3+sec^(-1)(sqrt(5...

    Text Solution

    |

  10. If (1)/(2) sin^(-1) [(3 sin 2 theta)/(5 + 4 cos 2 theta)] = tan^(-1) x...

    Text Solution

    |

  11. The value 2tan^(-1)[sqrt((a-b)/(a+b)tantheta/2)] is equal to cos^(-1)(...

    Text Solution

    |

  12. If sin^(-1) ((2a)/(1+a^2))+ sin^(-1) ((2b)/(1+b^2)) = 2 tan^(-1)x then...

    Text Solution

    |

  13. If 3\ sin^(-1)((2x)/(1+x^2))-4\ cos^(-1)((1-x^2)/(1+x^2))+2\ tan^(-1)(...

    Text Solution

    |

  14. If x(1) = 2 tan^(-1) ((1 + x)/(1 -x)), x(2) = sin^(-1) ((1 - x^(2))/(1...

    Text Solution

    |

  15. If the equation x^3+b x^2+c x+1=0,(b<c), has only one real rootalpha ,...

    Text Solution

    |

  16. The value of sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^2)] is equal to

    Text Solution

    |

  17. If cos^(- 1)x-cos^(- 1)(y/2)=alpha then 4x^2-4xycosalpha+y^2=

    Text Solution

    |

  18. If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi,t h e nx^4+y^2+z^4+4x^2y^2z^2=K(x^...

    Text Solution

    |

  19. If f(x)=sin^(-1)((sqrt(3))/2x-1/2sqrt(1-x^2)),-1/2lt=xlt=1,t h e nf(x)...

    Text Solution

    |

  20. If 2^(2pi//sin^((-1)x))-2(a+2)^(pi//sin^((-1)x))+8a<0 for at least one...

    Text Solution

    |