Home
Class 12
MATHS
sum(m=1)^(n) tan^(-1) ((2m)/(m^(4) + m^(...

`sum_(m=1)^(n) tan^(-1) ((2m)/(m^(4) + m^(2) + 2))` is equal to

A

`tan^(-1) ((n^(2) + n)/(n^(2) + n + 2))`

B

`tan^(-1) ((n^(2) -n)/(n^(2) - n + 2))`

C

`tan^(-1) ((n^(2) + n + 2)/(n^(2) + n))`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \sum_{m=1}^{n} \tan^{-1} \left( \frac{2m}{m^4 + m^2 + 2} \right) \), we will follow these steps: ### Step 1: Rewrite the expression We start with the expression inside the summation: \[ \tan^{-1} \left( \frac{2m}{m^4 + m^2 + 2} \right) \] We can rewrite the denominator: \[ m^4 + m^2 + 2 = (m^2 + 1)^2 + 1 \] Thus, we have: \[ \tan^{-1} \left( \frac{2m}{(m^2 + 1)^2 + 1} \right) \] ### Step 2: Use the identity for the difference of arctangents We can express the term as a difference of two arctangents: \[ \tan^{-1}(a) - \tan^{-1}(b) = \tan^{-1} \left( \frac{a - b}{1 + ab} \right) \] We can set: \[ a = m^2 + m + 1 \quad \text{and} \quad b = m^2 - m + 1 \] Then we have: \[ \tan^{-1}(m^2 + m + 1) - \tan^{-1}(m^2 - m + 1) \] ### Step 3: Substitute back into the summation Now, we can rewrite the summation: \[ \sum_{m=1}^{n} \left( \tan^{-1}(m^2 + m + 1) - \tan^{-1}(m^2 - m + 1) \right) \] ### Step 4: Recognize the telescoping nature This summation is telescoping: \[ = \left( \tan^{-1}(2) - \tan^{-1}(1) \right) + \left( \tan^{-1}(7) - \tan^{-1}(3) \right) + \ldots + \left( \tan^{-1}(n^2 + n + 1) - \tan^{-1}(n^2 - n + 1) \right) \] Most terms will cancel out, leaving us with: \[ = \tan^{-1}(n^2 + n + 1) - \tan^{-1}(1) \] ### Step 5: Final simplification Using the identity for the difference of arctangents: \[ \tan^{-1}(x) - \tan^{-1}(y) = \tan^{-1} \left( \frac{x - y}{1 + xy} \right) \] We can substitute \( x = n^2 + n + 1 \) and \( y = 1 \): \[ = \tan^{-1} \left( \frac{(n^2 + n + 1) - 1}{1 + (n^2 + n + 1) \cdot 1} \right) \] This simplifies to: \[ = \tan^{-1} \left( \frac{n^2 + n}{2 + n^2 + n} \right) \] ### Conclusion Thus, the final result is: \[ \sum_{m=1}^{n} \tan^{-1} \left( \frac{2m}{m^4 + m^2 + 2} \right) = \tan^{-1} \left( \frac{n^2 + n}{2 + n^2 + n} \right) \]

To solve the problem \( \sum_{m=1}^{n} \tan^{-1} \left( \frac{2m}{m^4 + m^2 + 2} \right) \), we will follow these steps: ### Step 1: Rewrite the expression We start with the expression inside the summation: \[ \tan^{-1} \left( \frac{2m}{m^4 + m^2 + 2} \right) \] We can rewrite the denominator: ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked comprehension type|16 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.6|9 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

The value of sum_(m=1)^ootan^(- 1)((2m)/(m^4+m^2+2)) is

If the sum sum_(n=1)^10 sum_(m=1)^10 tan^(-1) (m/n) = k pi , find the value of k

Prove that : sum_(m=1)^n\ \ \ tan^(-1)((2m)/(m^4+m^2+2))=tan^(-1)((n^2+n)/(n^2+n+2))

ABCD is a square of length a, a in N , a > 1. Let L_1, L_2 , L_3... be points on BC such that BL_1 = L_1 L_2 = L_2 L_3 = .... 1 and M_1,M_2 , M_3,.... be points on CD such that CM_1 = M_1M_2= M_2 M_3=... = 1 . Then sum_(n = 1)^(a-1) ((AL_n)^2 + (L_n M_n)^2) is equal to :

sum_(p=1)^(n) sum_(m=p)^(n) (("n"),("m"))(("m"),("p")) is equal to

Prove that: sum_(m=1)^ntan^(-1)((2m)/(m^4+m^2+2))=tan^(-1)((n^2+n)/(n^2+n+2))

f(1)=1 and f(n)=2sum_(r=1)^(n-1) f (r) . Then sum_(n=1)^mf(n) is equal to (A) 3^m-1 (B) 3^m (C) 3^(m-1) (D)none of these

The value of the determinant |(1,1,1),(.^(m)C_(1),.^(m +1)C_(1),.^(m+2)C_(1)),(.^(m)C_(2),.^(m +1)C_(2),.^(m+2)C_(2))| is equal to

2{(m-n)/(m+n)+1/3((m-n)/(m+n))^(3)+1/5((m-n)/(m+n))^(5) +..} is equals to

Prove that: tan^(-1)(m/n)+tan^(-1)((n-m)/(n+m))=[pi/4; m^(2)/n^(2) > -1

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Single correct
  1. Arithmetic mean of the non-zero solutions of the equation tan^-1 (1/(2...

    Text Solution

    |

  2. If cot^(-1)x+cot^(-1)y+cot^(-1)z=pi/2,x , y , z >0a n dx y<1, then x+y...

    Text Solution

    |

  3. If x^2+y^2+z^2=r^2,t h e ntan^(-1)((x y)/(z r))+tan^(-1)((y z)/(x r))+...

    Text Solution

    |

  4. The value of tan^(-1)((xcostheta)/(1-xsintheta))-cot^(-1)((costheta)/(...

    Text Solution

    |

  5. if cot^(-1)[sqrt(cosalpha)]-tan^(-1)[sqrt(cosalpha)]=x then sinx is eq...

    Text Solution

    |

  6. sum(r =1)^(n) sin^(-1) ((sqrtr - sqrt(r -1))/(sqrtr(r + 1))) is equal...

    Text Solution

    |

  7. sum(m=1)^(n) tan^(-1) ((2m)/(m^(4) + m^(2) + 2)) is equal to

    Text Solution

    |

  8. The value of tan^(-1).(4)/(7) + tan^(-1).(4)/(19) + tan^(-1).(4)/(39) ...

    Text Solution

    |

  9. The sum of series sec^(-1)sqrt(2)+sec^(-1)(sqrt(10))/3+sec^(-1)(sqrt(5...

    Text Solution

    |

  10. If (1)/(2) sin^(-1) [(3 sin 2 theta)/(5 + 4 cos 2 theta)] = tan^(-1) x...

    Text Solution

    |

  11. The value 2tan^(-1)[sqrt((a-b)/(a+b)tantheta/2)] is equal to cos^(-1)(...

    Text Solution

    |

  12. If sin^(-1) ((2a)/(1+a^2))+ sin^(-1) ((2b)/(1+b^2)) = 2 tan^(-1)x then...

    Text Solution

    |

  13. If 3\ sin^(-1)((2x)/(1+x^2))-4\ cos^(-1)((1-x^2)/(1+x^2))+2\ tan^(-1)(...

    Text Solution

    |

  14. If x(1) = 2 tan^(-1) ((1 + x)/(1 -x)), x(2) = sin^(-1) ((1 - x^(2))/(1...

    Text Solution

    |

  15. If the equation x^3+b x^2+c x+1=0,(b<c), has only one real rootalpha ,...

    Text Solution

    |

  16. The value of sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^2)] is equal to

    Text Solution

    |

  17. If cos^(- 1)x-cos^(- 1)(y/2)=alpha then 4x^2-4xycosalpha+y^2=

    Text Solution

    |

  18. If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi,t h e nx^4+y^2+z^4+4x^2y^2z^2=K(x^...

    Text Solution

    |

  19. If f(x)=sin^(-1)((sqrt(3))/2x-1/2sqrt(1-x^2)),-1/2lt=xlt=1,t h e nf(x)...

    Text Solution

    |

  20. If 2^(2pi//sin^((-1)x))-2(a+2)^(pi//sin^((-1)x))+8a<0 for at least one...

    Text Solution

    |