Home
Class 12
MATHS
The value of tan^(-1).(4)/(7) + tan^(-1)...

The value of `tan^(-1).(4)/(7) + tan^(-1).(4)/(19) + tan^(-1).(4)/(39) + tan^(-1).(4)/(67) ... oo` equals

A

`tan^(-1) 1 + tan^(-1).(1)/(2) + tan^(-1).(1)/(3)`

B

`tan^(-1) 1 + cot^(-1) 3`
`cot^(-1) + cot^(-1).(1)/(2) + cot^(-1).(1)/(3)`

C

`cot^(-1) 1 + cot^(-1).(1)/(2) + cot^(-1).(1)/(3)`

D

`cot^(-1) 1 + tan^(-1) 3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the series \( S = \tan^{-1}\left(\frac{4}{7}\right) + \tan^{-1}\left(\frac{4}{19}\right) + \tan^{-1}\left(\frac{4}{39}\right) + \tan^{-1}\left(\frac{4}{67}\right) + \ldots \) up to infinity, we can follow these steps: ### Step 1: Identify the general term The general term of the series can be expressed as: \[ \tan^{-1}\left(\frac{4}{4n^2 + 3}\right) \] This is derived from the observation that the denominators are of the form \( 4n^2 + 3 \). ### Step 2: Rewrite the term We can rewrite the term: \[ \tan^{-1}\left(\frac{4}{4n^2 + 3}\right) = \tan^{-1}\left(\frac{1}{\frac{4n^2 + 3}{4}}\right) = \tan^{-1}\left(\frac{1}{n^2 + \frac{3}{4}}\right) \] ### Step 3: Use the tangent subtraction formula Using the identity: \[ \tan^{-1} a - \tan^{-1} b = \tan^{-1}\left(\frac{a - b}{1 + ab}\right) \] we can express: \[ \tan^{-1}\left(\frac{1}{n + \frac{1}{2}}\right) - \tan^{-1}\left(\frac{1}{n - \frac{1}{2}}\right) \] This leads us to: \[ \tan^{-1}\left(n + \frac{1}{2}\right) - \tan^{-1}\left(n - \frac{1}{2}\right) \] ### Step 4: Sum the series Now, we can express the sum \( S \) as: \[ S = \sum_{n=1}^{\infty} \left( \tan^{-1}\left(n + \frac{1}{2}\right) - \tan^{-1}\left(n - \frac{1}{2}\right) \right) \] ### Step 5: Telescoping series This is a telescoping series. When we write out the first few terms: \[ S = \left( \tan^{-1}\left(1 + \frac{1}{2}\right) - \tan^{-1}\left(1 - \frac{1}{2}\right) \right) + \left( \tan^{-1}\left(2 + \frac{1}{2}\right) - \tan^{-1}\left(2 - \frac{1}{2}\right) \right) + \ldots \] Most terms will cancel, leaving us with: \[ S = \lim_{K \to \infty} \left( \tan^{-1}\left(K + \frac{1}{2}\right) - \tan^{-1}\left(\frac{1}{2}\right) \right) \] ### Step 6: Evaluate the limit As \( K \to \infty \), \( \tan^{-1}(K + \frac{1}{2}) \to \frac{\pi}{2} \). Thus: \[ S = \frac{\pi}{2} - \tan^{-1}\left(\frac{1}{2}\right) \] ### Step 7: Final expression We know that: \[ \tan^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{4} - \tan^{-1}\left(2\right) \] Thus, the final result can be expressed as: \[ S = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4} \] ### Conclusion The value of the series is: \[ S = \frac{\pi}{4} \]

To solve the series \( S = \tan^{-1}\left(\frac{4}{7}\right) + \tan^{-1}\left(\frac{4}{19}\right) + \tan^{-1}\left(\frac{4}{39}\right) + \tan^{-1}\left(\frac{4}{67}\right) + \ldots \) up to infinity, we can follow these steps: ### Step 1: Identify the general term The general term of the series can be expressed as: \[ \tan^{-1}\left(\frac{4}{4n^2 + 3}\right) \] This is derived from the observation that the denominators are of the form \( 4n^2 + 3 \). ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked comprehension type|16 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.6|9 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

Find the value of 4 tan^(-1).(1)/(5) - tan^(-1).(1)/(70) + tan^(-1).(1)/(99)

4 tan^(-1)(1/5)-tan^(-1)(1/239) is equal to

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

Prove that : tan^(-1).(1)/(4)+tan^(-1).(2)/(9)=(1)/(2)sin^(-1).(4)/(5)

tan^(- 1)(1/4)+tan^(- 1)(2/9)=1/2tan^(- 1)(4/3)

tan^(- 1)(1/4)+tan^(- 1)(2/9)=1/2tan^(- 1)(4/3)

Show that tan^(-1) (1/2) +tan^(-1) (1/8) = tan^(-1) (3/4) - tan^(-1)(1/18)

prove that: 2 tan ^(-1).(1)/(3) + tan^(-1).(1)/( 7) = (pi)/(4)

Find the value of 4tan^(-1)1/5-tan^(-1)1/(70)+tan^(-1)1/(99)

Evaluate 2tan^(-1)(1/2)+tan^(-1)(1/4)

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Single correct
  1. Arithmetic mean of the non-zero solutions of the equation tan^-1 (1/(2...

    Text Solution

    |

  2. If cot^(-1)x+cot^(-1)y+cot^(-1)z=pi/2,x , y , z >0a n dx y<1, then x+y...

    Text Solution

    |

  3. If x^2+y^2+z^2=r^2,t h e ntan^(-1)((x y)/(z r))+tan^(-1)((y z)/(x r))+...

    Text Solution

    |

  4. The value of tan^(-1)((xcostheta)/(1-xsintheta))-cot^(-1)((costheta)/(...

    Text Solution

    |

  5. if cot^(-1)[sqrt(cosalpha)]-tan^(-1)[sqrt(cosalpha)]=x then sinx is eq...

    Text Solution

    |

  6. sum(r =1)^(n) sin^(-1) ((sqrtr - sqrt(r -1))/(sqrtr(r + 1))) is equal...

    Text Solution

    |

  7. sum(m=1)^(n) tan^(-1) ((2m)/(m^(4) + m^(2) + 2)) is equal to

    Text Solution

    |

  8. The value of tan^(-1).(4)/(7) + tan^(-1).(4)/(19) + tan^(-1).(4)/(39) ...

    Text Solution

    |

  9. The sum of series sec^(-1)sqrt(2)+sec^(-1)(sqrt(10))/3+sec^(-1)(sqrt(5...

    Text Solution

    |

  10. If (1)/(2) sin^(-1) [(3 sin 2 theta)/(5 + 4 cos 2 theta)] = tan^(-1) x...

    Text Solution

    |

  11. The value 2tan^(-1)[sqrt((a-b)/(a+b)tantheta/2)] is equal to cos^(-1)(...

    Text Solution

    |

  12. If sin^(-1) ((2a)/(1+a^2))+ sin^(-1) ((2b)/(1+b^2)) = 2 tan^(-1)x then...

    Text Solution

    |

  13. If 3\ sin^(-1)((2x)/(1+x^2))-4\ cos^(-1)((1-x^2)/(1+x^2))+2\ tan^(-1)(...

    Text Solution

    |

  14. If x(1) = 2 tan^(-1) ((1 + x)/(1 -x)), x(2) = sin^(-1) ((1 - x^(2))/(1...

    Text Solution

    |

  15. If the equation x^3+b x^2+c x+1=0,(b<c), has only one real rootalpha ,...

    Text Solution

    |

  16. The value of sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^2)] is equal to

    Text Solution

    |

  17. If cos^(- 1)x-cos^(- 1)(y/2)=alpha then 4x^2-4xycosalpha+y^2=

    Text Solution

    |

  18. If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi,t h e nx^4+y^2+z^4+4x^2y^2z^2=K(x^...

    Text Solution

    |

  19. If f(x)=sin^(-1)((sqrt(3))/2x-1/2sqrt(1-x^2)),-1/2lt=xlt=1,t h e nf(x)...

    Text Solution

    |

  20. If 2^(2pi//sin^((-1)x))-2(a+2)^(pi//sin^((-1)x))+8a<0 for at least one...

    Text Solution

    |