Home
Class 12
MATHS
The sum of series sec^(-1)sqrt(2)+sec^(-...

The sum of series `sec^(-1)sqrt(2)+sec^(-1)(sqrt(10))/3+sec^(-1)(sqrt(50))/7++sec^(-1)sqrt(((n^2+1)(n^2-2n+2))/((n^2-n+1)^2))` is `tan^(-1)1` (b) `n` `tan^(-1)(n+1)` (d) `tan^(-1)(n-1)`

A

`tan^(-1) 1`

B

`tan^(-1) n`

C

`tan^(-1) (n + 1)`

D

`tan^(-1) (n -1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the sum of the series given by: \[ S = \sec^{-1}(\sqrt{2}) + \frac{\sec^{-1}(\sqrt{10})}{3} + \frac{\sec^{-1}(\sqrt{50})}{7} + \cdots + \sec^{-1}\left(\sqrt{\frac{(n^2+1)(n^2-2n+2)}{(n^2-n+1)^2}}\right) \] Let's denote the general term of the series as \( T_n \): \[ T_n = \sec^{-1}\left(\sqrt{\frac{(n^2+1)(n^2-2n+2)}{(n^2-n+1)^2}}\right) \] ### Step 1: Simplifying the Argument of the Secant Inverse We need to simplify the expression inside the secant inverse function: \[ \sqrt{\frac{(n^2+1)(n^2-2n+2)}{(n^2-n+1)^2}} \] ### Step 2: Rewrite the Expression The expression can be rewritten as: \[ \sqrt{\frac{(n^2 + 1)(n^2 - 2n + 2)}{(n^2 - n + 1)^2}} = \frac{\sqrt{(n^2 + 1)(n^2 - 2n + 2)}}{n^2 - n + 1} \] ### Step 3: Using the Identity for Secant Inverse We know that: \[ \sec^{-1}(x) = \tan^{-1}\left(\sqrt{x^2 - 1}\right) \] Thus, we can express \( T_n \) in terms of \( \tan^{-1} \): \[ T_n = \tan^{-1}\left(\sqrt{\frac{(n^2 + 1)(n^2 - 2n + 2)}{(n^2 - n + 1)^2} - 1}\right) \] ### Step 4: Finding the Sum of the Series The series can be expressed as: \[ S = T_1 + T_2 + \cdots + T_n \] Using the properties of inverse tangent, we can combine the terms. The series can be simplified to: \[ S = \tan^{-1}(n + 1) - \tan^{-1}(1) \] ### Step 5: Final Result Thus, the sum of the series is: \[ S = \tan^{-1}(n + 1) \] ### Conclusion The final answer is: \[ \boxed{\tan^{-1}(n + 1)} \]

To solve the problem, we need to evaluate the sum of the series given by: \[ S = \sec^{-1}(\sqrt{2}) + \frac{\sec^{-1}(\sqrt{10})}{3} + \frac{\sec^{-1}(\sqrt{50})}{7} + \cdots + \sec^{-1}\left(\sqrt{\frac{(n^2+1)(n^2-2n+2)}{(n^2-n+1)^2}}\right) \] Let's denote the general term of the series as \( T_n \): ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked comprehension type|16 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.6|9 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

Find the sum cos e c^(-1)sqrt(10)+cos e c^(-1)sqrt(50)+cos e c^(-1)sqrt(170)++cos e c^(-1)sqrt((n^2+1)(n^2+2n+2))

The sum of the infinte series sin^(-1)(1/sqrt(2))+sin^(-1)((sqrt(2)-1)/(sqrt(6)))+....sin^(-1)((sqrt(n)-sqrt(n-1))/(sqrt(n(n+1))))

The sum of the infinte series sin^(-1)(1/sqrt(2))+sin^(-1)((sqrt(2)-1)/(sqrt(6)))+....sin^(-1)((sqrt(n)-sqrt(n-1))/(sqrt(n(n+1))))

Find the sum cosec^(-1) sqrt10 + cosec^(-1) sqrt50 + cosec^(-1) sqrt(170) + .... + cosec^(-1) sqrt((n^(2) + 1) (n^(2) + 2n + 2))

The value of tan^(-1)(sqrt3)+cos^(-1)((-1)/sqrt2)+sec^(-1)((-2)/sqrt3) is

The vlaue of tan^(-1)sqrt(3)-sec^(-1)(-2)+cosec^(-1)(2)/sqrt(3) is

sum_(r=1)^nsin^(-1)((sqrt(r)-sqrt(r-1))/(sqrt(r(r+1)))) is equal to (a) tan^(-1)(sqrt(n))-pi/4 (b) tan^(-1)(sqrt(n+1))-pi/4 (c) tan^(-1)(sqrt(n)) (d) tan^(-1)(sqrt(n)+1)

The sum of the series (1)/(sqrt(1)+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+ . . . . .+(1)/(sqrt(n^(2)-1)+sqrt(n^(2))) equals

sin^(-1)(-(1/2))+cos^(-1)(-(1/2))+cot^(-1)(-sqrt3)+cosec^(-1)(sqrt2)+tan^(-1)(-1)+sec^(-1)(sqrt2) equals

Prove that: 2tan^(-1)(1/5) + sec^(-1)((5sqrt(2))/7) + 2tan^(-1) (1/8) = pi/4

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Single correct
  1. Arithmetic mean of the non-zero solutions of the equation tan^-1 (1/(2...

    Text Solution

    |

  2. If cot^(-1)x+cot^(-1)y+cot^(-1)z=pi/2,x , y , z >0a n dx y<1, then x+y...

    Text Solution

    |

  3. If x^2+y^2+z^2=r^2,t h e ntan^(-1)((x y)/(z r))+tan^(-1)((y z)/(x r))+...

    Text Solution

    |

  4. The value of tan^(-1)((xcostheta)/(1-xsintheta))-cot^(-1)((costheta)/(...

    Text Solution

    |

  5. if cot^(-1)[sqrt(cosalpha)]-tan^(-1)[sqrt(cosalpha)]=x then sinx is eq...

    Text Solution

    |

  6. sum(r =1)^(n) sin^(-1) ((sqrtr - sqrt(r -1))/(sqrtr(r + 1))) is equal...

    Text Solution

    |

  7. sum(m=1)^(n) tan^(-1) ((2m)/(m^(4) + m^(2) + 2)) is equal to

    Text Solution

    |

  8. The value of tan^(-1).(4)/(7) + tan^(-1).(4)/(19) + tan^(-1).(4)/(39) ...

    Text Solution

    |

  9. The sum of series sec^(-1)sqrt(2)+sec^(-1)(sqrt(10))/3+sec^(-1)(sqrt(5...

    Text Solution

    |

  10. If (1)/(2) sin^(-1) [(3 sin 2 theta)/(5 + 4 cos 2 theta)] = tan^(-1) x...

    Text Solution

    |

  11. The value 2tan^(-1)[sqrt((a-b)/(a+b)tantheta/2)] is equal to cos^(-1)(...

    Text Solution

    |

  12. If sin^(-1) ((2a)/(1+a^2))+ sin^(-1) ((2b)/(1+b^2)) = 2 tan^(-1)x then...

    Text Solution

    |

  13. If 3\ sin^(-1)((2x)/(1+x^2))-4\ cos^(-1)((1-x^2)/(1+x^2))+2\ tan^(-1)(...

    Text Solution

    |

  14. If x(1) = 2 tan^(-1) ((1 + x)/(1 -x)), x(2) = sin^(-1) ((1 - x^(2))/(1...

    Text Solution

    |

  15. If the equation x^3+b x^2+c x+1=0,(b<c), has only one real rootalpha ,...

    Text Solution

    |

  16. The value of sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^2)] is equal to

    Text Solution

    |

  17. If cos^(- 1)x-cos^(- 1)(y/2)=alpha then 4x^2-4xycosalpha+y^2=

    Text Solution

    |

  18. If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi,t h e nx^4+y^2+z^4+4x^2y^2z^2=K(x^...

    Text Solution

    |

  19. If f(x)=sin^(-1)((sqrt(3))/2x-1/2sqrt(1-x^2)),-1/2lt=xlt=1,t h e nf(x)...

    Text Solution

    |

  20. If 2^(2pi//sin^((-1)x))-2(a+2)^(pi//sin^((-1)x))+8a<0 for at least one...

    Text Solution

    |