Home
Class 12
MATHS
The value 2tan^(-1)[sqrt((a-b)/(a+b)tant...

The value `2tan^(-1)[sqrt((a-b)/(a+b)tantheta/2)]` is equal to `cos^(-1)((acostheta+b)/(a+bcostheta))` (b) `cos^(-1)((a+bcostheta)/(acostheta+b))` `cos^(-1)((acostheta)/(a+bcostheta))` (d) `cos^(-1)((bcostheta)/(acostheta+b))`

A

`cos^(-1) ((a cos theta + b)/(a + b cos theta))`

B

`cos^(-1) ((a + b cos theta)/(a cos theta + b))`

C

`cos^(-1) ((a cos theta)/(a + b cos theta))`

D

`cos^(-1) ((b cos theta)/(a cos theta + b))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \(2\tan^{-1}\left(\sqrt{\frac{(a-b)}{(a+b)}\tan\frac{\theta}{2}}\right)\) and show that it is equal to one of the given options. ### Step-by-step Solution: 1. **Start with the given expression:** \[ 2\tan^{-1}\left(\sqrt{\frac{(a-b)}{(a+b)}\tan\frac{\theta}{2}}\right) \] 2. **Use the double angle formula for tangent:** Recall that: \[ \tan(2x) = \frac{2\tan x}{1 - \tan^2 x} \] Let \(x = \tan^{-1}\left(\sqrt{\frac{(a-b)}{(a+b)}\tan\frac{\theta}{2}}\right)\). Then: \[ \tan(2x) = \frac{2\sqrt{\frac{(a-b)}{(a+b)}\tan\frac{\theta}{2}}}{1 - \left(\frac{(a-b)}{(a+b)}\tan\frac{\theta}{2}\right)} \] 3. **Simplify the expression:** Substitute \(u = \tan\frac{\theta}{2}\): \[ \tan(2x) = \frac{2\sqrt{\frac{(a-b)}{(a+b)}u}}{1 - \frac{(a-b)}{(a+b)}u} \] 4. **Convert to cosine:** We can express this in terms of cosine using the identity: \[ \tan(2x) = \frac{\sin(2x)}{\cos(2x)} \] and relate it to cosine: \[ 2x = \cos^{-1}\left(\frac{1 - \tan^2 x}{1 + \tan^2 x}\right) \] 5. **Using the tangent half-angle identity:** We know: \[ \tan\frac{\theta}{2} = \frac{1 - \cos\theta}{\sin\theta} \] Substitute this into our expression. 6. **Final expression:** After simplification, we arrive at: \[ \cos^{-1}\left(\frac{a \cos \theta + b}{a + b \cos \theta}\right) \] 7. **Choose the correct option:** Comparing with the options provided, we find that: \[ 2\tan^{-1}\left(\sqrt{\frac{(a-b)}{(a+b)}\tan\frac{\theta}{2}}\right) = \cos^{-1}\left(\frac{a \cos \theta + b}{a + b \cos \theta}\right) \] This corresponds to option (a). ### Conclusion: The value \(2\tan^{-1}\left(\sqrt{\frac{(a-b)}{(a+b)}\tan\frac{\theta}{2}}\right)\) is equal to: \[ \cos^{-1}\left(\frac{a \cos \theta + b}{a + b \cos \theta}\right) \]

To solve the problem, we need to evaluate the expression \(2\tan^{-1}\left(\sqrt{\frac{(a-b)}{(a+b)}\tan\frac{\theta}{2}}\right)\) and show that it is equal to one of the given options. ### Step-by-step Solution: 1. **Start with the given expression:** \[ 2\tan^{-1}\left(\sqrt{\frac{(a-b)}{(a+b)}\tan\frac{\theta}{2}}\right) \] ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked comprehension type|16 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.6|9 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

Prove that 2tan^(-1)(sqrt((a-b)/(a+b))tan(theta/2))=cos^(-1)((acostheta+b)/(a+bcostheta))

prove that 2tan^-1(sqrt((a-b)/(a+b))tan(theta/2)) = cos^-1((acostheta+b)/(a+bcostheta))

Prove that 2 tan^(-1) (sqrt((a-b)/(a+b)) "tan"(theta)/(2))=cos^(-1) ((a cos theta +b)/(a +b cos theta))

The value of (cos3theta)/(2cos2theta-1) is equal to (a) costheta (b) sintheta (c) tantheta (d) none of these

The value of (cos3theta)/(2cos2theta-1) is equal to (a) costheta (b) sintheta (c) tantheta (d) none of these

Solve the equation: cos^(-1)(a/x)-cos^(-1)(b/x)=cos^(-1)(1/b)-cos^(-1)(1/a)

Solve the equation: cos^(-1)(a/x)-cos^(-1)(b/x)=cos^(-1)(1/b) - cos^(-1)(1/a)

If cottheta=(b)/(a) ,show that (asintheta-bcostheta)/(asintheta+bcostheta)=(a^(2)-b^(2))/(a^(2)+b^(2)) .

If tantheta=a/b , show that (asintheta-bcostheta)/(asintheta+bcostheta)=(a^2-b^2)/(a^2+b^2)

If acosheta+bsintheta=4 & asintheta - bcostheta= 3 then a^2+b^2

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Single correct
  1. Arithmetic mean of the non-zero solutions of the equation tan^-1 (1/(2...

    Text Solution

    |

  2. If cot^(-1)x+cot^(-1)y+cot^(-1)z=pi/2,x , y , z >0a n dx y<1, then x+y...

    Text Solution

    |

  3. If x^2+y^2+z^2=r^2,t h e ntan^(-1)((x y)/(z r))+tan^(-1)((y z)/(x r))+...

    Text Solution

    |

  4. The value of tan^(-1)((xcostheta)/(1-xsintheta))-cot^(-1)((costheta)/(...

    Text Solution

    |

  5. if cot^(-1)[sqrt(cosalpha)]-tan^(-1)[sqrt(cosalpha)]=x then sinx is eq...

    Text Solution

    |

  6. sum(r =1)^(n) sin^(-1) ((sqrtr - sqrt(r -1))/(sqrtr(r + 1))) is equal...

    Text Solution

    |

  7. sum(m=1)^(n) tan^(-1) ((2m)/(m^(4) + m^(2) + 2)) is equal to

    Text Solution

    |

  8. The value of tan^(-1).(4)/(7) + tan^(-1).(4)/(19) + tan^(-1).(4)/(39) ...

    Text Solution

    |

  9. The sum of series sec^(-1)sqrt(2)+sec^(-1)(sqrt(10))/3+sec^(-1)(sqrt(5...

    Text Solution

    |

  10. If (1)/(2) sin^(-1) [(3 sin 2 theta)/(5 + 4 cos 2 theta)] = tan^(-1) x...

    Text Solution

    |

  11. The value 2tan^(-1)[sqrt((a-b)/(a+b)tantheta/2)] is equal to cos^(-1)(...

    Text Solution

    |

  12. If sin^(-1) ((2a)/(1+a^2))+ sin^(-1) ((2b)/(1+b^2)) = 2 tan^(-1)x then...

    Text Solution

    |

  13. If 3\ sin^(-1)((2x)/(1+x^2))-4\ cos^(-1)((1-x^2)/(1+x^2))+2\ tan^(-1)(...

    Text Solution

    |

  14. If x(1) = 2 tan^(-1) ((1 + x)/(1 -x)), x(2) = sin^(-1) ((1 - x^(2))/(1...

    Text Solution

    |

  15. If the equation x^3+b x^2+c x+1=0,(b<c), has only one real rootalpha ,...

    Text Solution

    |

  16. The value of sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^2)] is equal to

    Text Solution

    |

  17. If cos^(- 1)x-cos^(- 1)(y/2)=alpha then 4x^2-4xycosalpha+y^2=

    Text Solution

    |

  18. If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi,t h e nx^4+y^2+z^4+4x^2y^2z^2=K(x^...

    Text Solution

    |

  19. If f(x)=sin^(-1)((sqrt(3))/2x-1/2sqrt(1-x^2)),-1/2lt=xlt=1,t h e nf(x)...

    Text Solution

    |

  20. If 2^(2pi//sin^((-1)x))-2(a+2)^(pi//sin^((-1)x))+8a<0 for at least one...

    Text Solution

    |