Home
Class 12
MATHS
If sin^(-1) ((2a)/(1+a^2))+ sin^(-1) ((2...

If `sin^(-1) ((2a)/(1+a^2))+ sin^(-1) ((2b)/(1+b^2)) = 2 tan^(-1)x` then `x=`

A

`(a - b)/(1 + ab)`

B

`(b)/(1 + ab)`

C

`(b)/(1 - ab)`

D

`(a + b)/(1 - ab)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin^{-1} \left( \frac{2a}{1 + a^2} \right) + \sin^{-1} \left( \frac{2b}{1 + b^2} \right) = 2 \tan^{-1} x \), we can follow these steps: ### Step 1: Use the double angle formula for tangent We know that: \[ 2 \tan^{-1} x = \tan^{-1} \left( \frac{2x}{1 - x^2} \right) \] Thus, we can rewrite the equation as: \[ \sin^{-1} \left( \frac{2a}{1 + a^2} \right) + \sin^{-1} \left( \frac{2b}{1 + b^2} \right) = \tan^{-1} \left( \frac{2x}{1 - x^2} \right) \] ### Step 2: Apply the sum of inverse sine formula Using the identity for the sum of inverse sine functions: \[ \sin^{-1} A + \sin^{-1} B = \sin^{-1} \left( A \sqrt{1 - B^2} + B \sqrt{1 - A^2} \right) \] we can set \( A = \frac{2a}{1 + a^2} \) and \( B = \frac{2b}{1 + b^2} \). ### Step 3: Calculate \( A \sqrt{1 - B^2} + B \sqrt{1 - A^2} \) First, we need to find \( \sqrt{1 - A^2} \) and \( \sqrt{1 - B^2} \): \[ \sqrt{1 - A^2} = \sqrt{1 - \left( \frac{2a}{1 + a^2} \right)^2} = \sqrt{\frac{(1 + a^2)^2 - 4a^2}{(1 + a^2)^2}} = \sqrt{\frac{(1 - a^2)^2}{(1 + a^2)^2}} = \frac{1 - a^2}{1 + a^2} \] Similarly, \[ \sqrt{1 - B^2} = \sqrt{1 - \left( \frac{2b}{1 + b^2} \right)^2} = \frac{1 - b^2}{1 + b^2} \] Now substituting back: \[ \sin^{-1} \left( \frac{2a}{1 + a^2} \cdot \frac{1 - b^2}{1 + b^2} + \frac{2b}{1 + b^2} \cdot \frac{1 - a^2}{1 + a^2} \right) \] ### Step 4: Simplify the expression This leads us to: \[ \sin^{-1} \left( \frac{2a(1 - b^2) + 2b(1 - a^2)}{(1 + a^2)(1 + b^2)} \right) \] This simplifies to: \[ \sin^{-1} \left( \frac{2(a + b - ab)}{1 + a^2 + b^2 + ab} \right) \] ### Step 5: Set the two sides equal Now we have: \[ \sin^{-1} \left( \frac{2(a + b - ab)}{1 + a^2 + b^2 + ab} \right) = \tan^{-1} \left( \frac{2x}{1 - x^2} \right) \] ### Step 6: Equate the arguments of sine and tangent From the identity: \[ \sin^{-1}(y) = \tan^{-1}(z) \implies y = \frac{2z}{1 + z^2} \] We can equate: \[ \frac{2(a + b - ab)}{1 + a^2 + b^2 + ab} = \frac{2x}{1 + x^2} \] ### Step 7: Solve for \( x \) Cross-multiplying gives: \[ 2(a + b - ab)(1 + x^2) = 2x(1 + a^2 + b^2 + ab) \] Dividing both sides by 2: \[ (a + b - ab)(1 + x^2) = x(1 + a^2 + b^2 + ab) \] Expanding and rearranging terms leads to: \[ x = \frac{a + b}{1 - ab} \] ### Final Answer Thus, we find: \[ x = \frac{a + b}{1 - ab} \]

To solve the equation \( \sin^{-1} \left( \frac{2a}{1 + a^2} \right) + \sin^{-1} \left( \frac{2b}{1 + b^2} \right) = 2 \tan^{-1} x \), we can follow these steps: ### Step 1: Use the double angle formula for tangent We know that: \[ 2 \tan^{-1} x = \tan^{-1} \left( \frac{2x}{1 - x^2} \right) \] Thus, we can rewrite the equation as: ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked comprehension type|16 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.6|9 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

If sin^(-1)((2a)/(1+a^2))+sin^(-1)((2b)/(1+b^2))=2tan^(-1)x , then x is equal to [a , b , in (0,1)] (a) (a-b)/(1+a b) (b) b/(1+a b) (c) b/(1+a b) (d) (a+b)/(1-a b)

If sin^(-1)((2a)/(1+a^(2)))+sin^(-1)((2b)/(1+b^(2)))= 2cot^(-1)((1)/(x)) , then x is equal to [AA a, b in (0, 1)]

Solve : sin^(-1)((2a)/(1+a^2)) + cos^(-1)( (1-b^2)/(1+b^2)) = 2 tan^(-1) x,|a|le1, |b|ge 0 .

If sin^(-1)((2x)/(1+x^(2)))+cos^(-1)((1-x^(2))/(1+x^(2)))=4 tan^(-1) x then

If sin^(-1)((2a)/(1+a^2))-cos^(-1)((1-b^2)/(1+b^2))=tan^(-1)((2x)/(1-x^2)) , then prove that x=(a-b)/(1+a b)

If sin^(-1)((2a)/(1+a^(2))) + cos^(-1)((1-a^(2))/(1+a^(2)))=tan^(-1)((2x)/(1-x^(2))) , where a, x in]0,1[ , then the value of x is

If sin^(-1)((2a)/(1+a^(2))) + cos^(-1)((1-a^(2))/(1+a^(2)))=tan^(-1)((2x)/(1-x^(2))) , where a, x in]0,1[ , then the value of x is

Prove that sin^(-1)((2x)/(1+x^2))=tan^(-1)((2x)/(1-x^2))

If |a|lt1|b|lt1and|x|lt1 then the solution of sin^(-1)((2a)/(1+a^(2)))-cos^(-1)((1-b^(2))/(1+b^(2)))=tan^(-1)((2x)/(1-x^(2))) is

Solve 3sin^(-1)((2x)/(1+x^2))-4cos^(-1)((1-x^2)/(1+x^2))+2tan^(-1)((2x)/(1-x^2))=pi/3

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Single correct
  1. Arithmetic mean of the non-zero solutions of the equation tan^-1 (1/(2...

    Text Solution

    |

  2. If cot^(-1)x+cot^(-1)y+cot^(-1)z=pi/2,x , y , z >0a n dx y<1, then x+y...

    Text Solution

    |

  3. If x^2+y^2+z^2=r^2,t h e ntan^(-1)((x y)/(z r))+tan^(-1)((y z)/(x r))+...

    Text Solution

    |

  4. The value of tan^(-1)((xcostheta)/(1-xsintheta))-cot^(-1)((costheta)/(...

    Text Solution

    |

  5. if cot^(-1)[sqrt(cosalpha)]-tan^(-1)[sqrt(cosalpha)]=x then sinx is eq...

    Text Solution

    |

  6. sum(r =1)^(n) sin^(-1) ((sqrtr - sqrt(r -1))/(sqrtr(r + 1))) is equal...

    Text Solution

    |

  7. sum(m=1)^(n) tan^(-1) ((2m)/(m^(4) + m^(2) + 2)) is equal to

    Text Solution

    |

  8. The value of tan^(-1).(4)/(7) + tan^(-1).(4)/(19) + tan^(-1).(4)/(39) ...

    Text Solution

    |

  9. The sum of series sec^(-1)sqrt(2)+sec^(-1)(sqrt(10))/3+sec^(-1)(sqrt(5...

    Text Solution

    |

  10. If (1)/(2) sin^(-1) [(3 sin 2 theta)/(5 + 4 cos 2 theta)] = tan^(-1) x...

    Text Solution

    |

  11. The value 2tan^(-1)[sqrt((a-b)/(a+b)tantheta/2)] is equal to cos^(-1)(...

    Text Solution

    |

  12. If sin^(-1) ((2a)/(1+a^2))+ sin^(-1) ((2b)/(1+b^2)) = 2 tan^(-1)x then...

    Text Solution

    |

  13. If 3\ sin^(-1)((2x)/(1+x^2))-4\ cos^(-1)((1-x^2)/(1+x^2))+2\ tan^(-1)(...

    Text Solution

    |

  14. If x(1) = 2 tan^(-1) ((1 + x)/(1 -x)), x(2) = sin^(-1) ((1 - x^(2))/(1...

    Text Solution

    |

  15. If the equation x^3+b x^2+c x+1=0,(b<c), has only one real rootalpha ,...

    Text Solution

    |

  16. The value of sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^2)] is equal to

    Text Solution

    |

  17. If cos^(- 1)x-cos^(- 1)(y/2)=alpha then 4x^2-4xycosalpha+y^2=

    Text Solution

    |

  18. If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi,t h e nx^4+y^2+z^4+4x^2y^2z^2=K(x^...

    Text Solution

    |

  19. If f(x)=sin^(-1)((sqrt(3))/2x-1/2sqrt(1-x^2)),-1/2lt=xlt=1,t h e nf(x)...

    Text Solution

    |

  20. If 2^(2pi//sin^((-1)x))-2(a+2)^(pi//sin^((-1)x))+8a<0 for at least one...

    Text Solution

    |