Home
Class 12
MATHS
If 3\ sin^(-1)((2x)/(1+x^2))-4\ cos^(-1)...

If `3\ sin^(-1)((2x)/(1+x^2))-4\ cos^(-1)((1-x^2)/(1+x^2))+2\ tan^(-1)((2x)/(1-x^2))=pi/3` , then `x` is equal to `1/(sqrt(3))` (b) `-1/(sqrt(3))` (c) `sqrt(3)` (d) `-(sqrt(3))/4`

A

`(1)/(sqrt3)`

B

`-(1)/(sqrt3)`

C

`sqrt3`

D

`-(sqrt3)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ 3 \sin^{-1}\left(\frac{2x}{1+x^2}\right) - 4 \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right) + 2 \tan^{-1}\left(\frac{2x}{1-x^2}\right) = \frac{\pi}{3}, \] we can use some known identities for inverse trigonometric functions. ### Step 1: Use the identities for inverse trigonometric functions We know that: 1. \(\sin^{-1}\left(\frac{2x}{1+x^2}\right) = 2 \tan^{-1}(x)\) 2. \(\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right) = 2 \tan^{-1}(x)\) 3. \(\tan^{-1}\left(\frac{2x}{1-x^2}\right) = 2 \tan^{-1}(x)\) Using these identities, we can rewrite the equation. ### Step 2: Substitute the identities into the equation Substituting the identities into the equation gives us: \[ 3 \cdot 2 \tan^{-1}(x) - 4 \cdot 2 \tan^{-1}(x) + 2 \cdot 2 \tan^{-1}(x) = \frac{\pi}{3}. \] This simplifies to: \[ 6 \tan^{-1}(x) - 8 \tan^{-1}(x) + 4 \tan^{-1}(x) = \frac{\pi}{3}. \] ### Step 3: Combine like terms Combining the terms on the left side, we have: \[ (6 - 8 + 4) \tan^{-1}(x) = \frac{\pi}{3}. \] This simplifies to: \[ 2 \tan^{-1}(x) = \frac{\pi}{3}. \] ### Step 4: Solve for \(\tan^{-1}(x)\) Dividing both sides by 2 gives us: \[ \tan^{-1}(x) = \frac{\pi}{6}. \] ### Step 5: Find \(x\) Taking the tangent of both sides, we find: \[ x = \tan\left(\frac{\pi}{6}\right). \] Since \(\tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}}\), we have: \[ x = \frac{1}{\sqrt{3}}. \] ### Final Answer Thus, the value of \(x\) is: \[ \boxed{\frac{1}{\sqrt{3}}}. \] ---

To solve the equation \[ 3 \sin^{-1}\left(\frac{2x}{1+x^2}\right) - 4 \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right) + 2 \tan^{-1}\left(\frac{2x}{1-x^2}\right) = \frac{\pi}{3}, \] we can use some known identities for inverse trigonometric functions. ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked comprehension type|16 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.6|9 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

If 3\ sin^(-1)((2x)/(1+x^2))-4\ cos^(-1)((1-x^2)/(1+x^2))+2\ tan^(-1)((2x)/(1-x^2))=pi/3 , then x is equal to (a) 1/(sqrt(3)) (b) -1/(sqrt(3)) (c) sqrt(3) (d) -(sqrt(3))/4

Solve 3sin^(-1)((2x)/(1+x^2))-4cos^(-1)((1-x^2)/(1+x^2))+2tan^(-1)((2x)/(1-x^2))=pi/3

If 3sin^(-1)((2x)/(1+x^2))-4cos^(-1)((1-x^2)/(1+x^2))+2tan^(-2)((2x)/(1-x^2))=pi/3, w h e r e|x|<1, then x is equal to 1/(sqrt(3)) (b) -1/(sqrt(3)) (c) sqrt(3) (d) -(sqrt(3))/4

If cos^-1 ((x^2-1)/(x^2+1))+ tan^-1 ((2x)/(x^2-1)) = (2pi)/3 , then x equal to (A) sqrt(3) (B) 2+sqrt(3) (C) 2-sqrt(3) (D) -sqrt(3)

If cos^-1 ((x^2-1)/(x^2+1))+ tan^-1 ((2x)/(x^2-1)) = (2pi)/3 , then x equal to (A) sqrt(3) (B) 2+sqrt(3) (C) 2-sqrt(3) (D) -sqrt(3)

If tan^(-1)x+2cot^(-1)x=(2pi)/3, then x , is equal to (a) (sqrt(3)-1)/(sqrt(3)+1) (b) 3 (c) sqrt(3) (d) sqrt(2)

If tan(cos^(-1)x)="sin"(cot^(-1)(1/2)) then x is equal to- a. 1/sqrt(5) b. 2/sqrt(5) c. 3/sqrt(5) d. sqrt(5)/3

If sin^(-1)((sqrt(x))/2)+sin^(-1)(sqrt(1-x/4))+tan^(-1)y=(2pi)/3 , then

If sin^(-1)x+cot^(-1)(1/2)=pi/2,\ t h e n\ x is 0 b. 1/(sqrt(5)) c. 2/(sqrt(5)) d. (sqrt(3))/2

If 4\ cos^(-1)x+sin^(-1)x=pi , then the value of x is (a) 3/2 (b) 1/(sqrt(2)) (c) (sqrt(3))/2 (d) 2/(sqrt(3))

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Single correct
  1. Arithmetic mean of the non-zero solutions of the equation tan^-1 (1/(2...

    Text Solution

    |

  2. If cot^(-1)x+cot^(-1)y+cot^(-1)z=pi/2,x , y , z >0a n dx y<1, then x+y...

    Text Solution

    |

  3. If x^2+y^2+z^2=r^2,t h e ntan^(-1)((x y)/(z r))+tan^(-1)((y z)/(x r))+...

    Text Solution

    |

  4. The value of tan^(-1)((xcostheta)/(1-xsintheta))-cot^(-1)((costheta)/(...

    Text Solution

    |

  5. if cot^(-1)[sqrt(cosalpha)]-tan^(-1)[sqrt(cosalpha)]=x then sinx is eq...

    Text Solution

    |

  6. sum(r =1)^(n) sin^(-1) ((sqrtr - sqrt(r -1))/(sqrtr(r + 1))) is equal...

    Text Solution

    |

  7. sum(m=1)^(n) tan^(-1) ((2m)/(m^(4) + m^(2) + 2)) is equal to

    Text Solution

    |

  8. The value of tan^(-1).(4)/(7) + tan^(-1).(4)/(19) + tan^(-1).(4)/(39) ...

    Text Solution

    |

  9. The sum of series sec^(-1)sqrt(2)+sec^(-1)(sqrt(10))/3+sec^(-1)(sqrt(5...

    Text Solution

    |

  10. If (1)/(2) sin^(-1) [(3 sin 2 theta)/(5 + 4 cos 2 theta)] = tan^(-1) x...

    Text Solution

    |

  11. The value 2tan^(-1)[sqrt((a-b)/(a+b)tantheta/2)] is equal to cos^(-1)(...

    Text Solution

    |

  12. If sin^(-1) ((2a)/(1+a^2))+ sin^(-1) ((2b)/(1+b^2)) = 2 tan^(-1)x then...

    Text Solution

    |

  13. If 3\ sin^(-1)((2x)/(1+x^2))-4\ cos^(-1)((1-x^2)/(1+x^2))+2\ tan^(-1)(...

    Text Solution

    |

  14. If x(1) = 2 tan^(-1) ((1 + x)/(1 -x)), x(2) = sin^(-1) ((1 - x^(2))/(1...

    Text Solution

    |

  15. If the equation x^3+b x^2+c x+1=0,(b<c), has only one real rootalpha ,...

    Text Solution

    |

  16. The value of sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^2)] is equal to

    Text Solution

    |

  17. If cos^(- 1)x-cos^(- 1)(y/2)=alpha then 4x^2-4xycosalpha+y^2=

    Text Solution

    |

  18. If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi,t h e nx^4+y^2+z^4+4x^2y^2z^2=K(x^...

    Text Solution

    |

  19. If f(x)=sin^(-1)((sqrt(3))/2x-1/2sqrt(1-x^2)),-1/2lt=xlt=1,t h e nf(x)...

    Text Solution

    |

  20. If 2^(2pi//sin^((-1)x))-2(a+2)^(pi//sin^((-1)x))+8a<0 for at least one...

    Text Solution

    |