Home
Class 12
MATHS
If x(1) = 2 tan^(-1) ((1 + x)/(1 -x)), x...

If `x_(1) = 2 tan^(-1) ((1 + x)/(1 -x)), x_(2) = sin^(-1) ((1 - x^(2))/(1 + x^(2))), " where " x in (0, 1)`, then 2(`x_(1) + x_(2)`) is equal to

A

0

B

`2pi`

C

`pi`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate \(2(x_1 + x_2)\) where: - \(x_1 = 2 \tan^{-1} \left( \frac{1 + x}{1 - x} \right)\) - \(x_2 = \sin^{-1} \left( \frac{1 - x^2}{1 + x^2} \right)\) where \(x\) is in the interval \((0, 1)\). ### Step 1: Simplifying \(x_1\) We start with the expression for \(x_1\): \[ x_1 = 2 \tan^{-1} \left( \frac{1 + x}{1 - x} \right) \] Using the double angle formula for tangent, we know: \[ \tan(2\theta) = \frac{2\tan(\theta)}{1 - \tan^2(\theta)} \] Let \(\theta = \tan^{-1} \left( \frac{1 + x}{1 - x} \right)\). Then: \[ \tan(\theta) = \frac{1 + x}{1 - x} \] Thus, \[ \tan(2\theta) = \frac{2 \left( \frac{1 + x}{1 - x} \right)}{1 - \left( \frac{1 + x}{1 - x} \right)^2} \] Calculating the denominator: \[ 1 - \left( \frac{1 + x}{1 - x} \right)^2 = 1 - \frac{(1 + x)^2}{(1 - x)^2} = \frac{(1 - x)^2 - (1 + x)^2}{(1 - x)^2} \] Expanding and simplifying: \[ (1 - x)^2 - (1 + x)^2 = (1 - 2x + x^2) - (1 + 2x + x^2) = -4x \] Thus, \[ 1 - \left( \frac{1 + x}{1 - x} \right)^2 = \frac{-4x}{(1 - x)^2} \] So we have: \[ \tan(2\theta) = \frac{2 \left( \frac{1 + x}{1 - x} \right)}{\frac{-4x}{(1 - x)^2}} = -\frac{(1 + x)(1 - x)^2}{2x} \] This expression is complex, so we will use a trigonometric identity instead. ### Step 2: Using the identity for \(x_1\) We can use the identity: \[ \tan^{-1} \left( \frac{1 + x}{1 - x} \right) = \tan^{-1} \left( \tan\left(\frac{\pi}{4} + \frac{x}{2}\right) \right) = \frac{\pi}{4} + \frac{x}{2} \] Thus, \[ x_1 = 2\left( \frac{\pi}{4} + \frac{x}{2} \right) = \frac{\pi}{2} + x \] ### Step 3: Simplifying \(x_2\) Now, we simplify \(x_2\): \[ x_2 = \sin^{-1} \left( \frac{1 - x^2}{1 + x^2} \right) \] Using the identity: \[ \sin^{-1}(y) + \cos^{-1}(y) = \frac{\pi}{2} \] We can rewrite \(x_2\) in terms of cosine: \[ x_2 = \cos^{-1} \left( \frac{x^2 - 1}{x^2 + 1} \right) \] ### Step 4: Adding \(x_1\) and \(x_2\) Now we add \(x_1\) and \(x_2\): \[ x_1 + x_2 = \left( \frac{\pi}{2} + x \right) + \sin^{-1} \left( \frac{1 - x^2}{1 + x^2} \right) \] Using the identity: \[ \sin^{-1} \left( \frac{1 - x^2}{1 + x^2} \right) + \cos^{-1} \left( \frac{1 - x^2}{1 + x^2} \right) = \frac{\pi}{2} \] Thus, we find: \[ x_1 + x_2 = \frac{\pi}{2} \] ### Step 5: Final Calculation Now we calculate \(2(x_1 + x_2)\): \[ 2(x_1 + x_2) = 2 \cdot \frac{\pi}{2} = \pi \] ### Conclusion Thus, the final answer is: \[ \boxed{\pi} \]

To solve the problem, we need to evaluate \(2(x_1 + x_2)\) where: - \(x_1 = 2 \tan^{-1} \left( \frac{1 + x}{1 - x} \right)\) - \(x_2 = \sin^{-1} \left( \frac{1 - x^2}{1 + x^2} \right)\) where \(x\) is in the interval \((0, 1)\). ### Step 1: Simplifying \(x_1\) ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked comprehension type|16 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.6|9 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

If x_1=2tan^(-1)((1+x)/(1-x)),x_2=sin^(-1)((1-x^2)/(1+x^2)) , where x in (0,1), then x_1+x_2 is equal to (a) 0 (b) 2pi (c) pi (d) none of these

Solve tan^(-1) ((1-x)/(1+x))= (1)/(2) tan^(-1) x(x gt 0)

If sin^(-1)((2x)/(1+x^(2)))+cos^(-1)((1-x^(2))/(1+x^(2)))=4 tan^(-1) x then

Let x_(1) , x_(2) , x_(3) be the solution of tan^(-1) ((2x + 1)/(x +1 )) + tan ^(-1) ((2x - 1)/( x -1 )) = 2 tan ^(-1) ( x + 1) " where " x_(1) lt x_(2) lt x_(3) " , then " 2x_(1) + x_(2) + x_(3)^(2) is equal to

Prove that sin^(-1)((2x)/(1+x^2))=tan^(-1)((2x)/(1-x^2))

If x in (0, 1) , then find the value of tan^(-1) ((1 -x^(2))/(2x)) + cos^(-1) ((1 -x^(2))/(1 + x^(2)))

If -1lexle0 then sin{tan^(-1)((1-x^(2))/(2x))-cos^(-1)((1-x^(2))/(1+x^(2)))} is equal to

If -1lexle0 then tan{1/2sin^(-1)((2x)/(1+x^(2)))+1/2cos^(-1)((1-x^(2))/(1+x^(2)))} is equal to

Differentiate tan^(-1)((2x)/(1-x^2)) with respect to sin^(-1)((2x)/(1+x^2)) , if x in (-1,\ 1)

Differentiate tan^(-1)((2x)/(1-x^2)) with respect to sin^(-1)((2x)/(1+x^2)) , if x in (-1,\ 1)

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Single correct
  1. Arithmetic mean of the non-zero solutions of the equation tan^-1 (1/(2...

    Text Solution

    |

  2. If cot^(-1)x+cot^(-1)y+cot^(-1)z=pi/2,x , y , z >0a n dx y<1, then x+y...

    Text Solution

    |

  3. If x^2+y^2+z^2=r^2,t h e ntan^(-1)((x y)/(z r))+tan^(-1)((y z)/(x r))+...

    Text Solution

    |

  4. The value of tan^(-1)((xcostheta)/(1-xsintheta))-cot^(-1)((costheta)/(...

    Text Solution

    |

  5. if cot^(-1)[sqrt(cosalpha)]-tan^(-1)[sqrt(cosalpha)]=x then sinx is eq...

    Text Solution

    |

  6. sum(r =1)^(n) sin^(-1) ((sqrtr - sqrt(r -1))/(sqrtr(r + 1))) is equal...

    Text Solution

    |

  7. sum(m=1)^(n) tan^(-1) ((2m)/(m^(4) + m^(2) + 2)) is equal to

    Text Solution

    |

  8. The value of tan^(-1).(4)/(7) + tan^(-1).(4)/(19) + tan^(-1).(4)/(39) ...

    Text Solution

    |

  9. The sum of series sec^(-1)sqrt(2)+sec^(-1)(sqrt(10))/3+sec^(-1)(sqrt(5...

    Text Solution

    |

  10. If (1)/(2) sin^(-1) [(3 sin 2 theta)/(5 + 4 cos 2 theta)] = tan^(-1) x...

    Text Solution

    |

  11. The value 2tan^(-1)[sqrt((a-b)/(a+b)tantheta/2)] is equal to cos^(-1)(...

    Text Solution

    |

  12. If sin^(-1) ((2a)/(1+a^2))+ sin^(-1) ((2b)/(1+b^2)) = 2 tan^(-1)x then...

    Text Solution

    |

  13. If 3\ sin^(-1)((2x)/(1+x^2))-4\ cos^(-1)((1-x^2)/(1+x^2))+2\ tan^(-1)(...

    Text Solution

    |

  14. If x(1) = 2 tan^(-1) ((1 + x)/(1 -x)), x(2) = sin^(-1) ((1 - x^(2))/(1...

    Text Solution

    |

  15. If the equation x^3+b x^2+c x+1=0,(b<c), has only one real rootalpha ,...

    Text Solution

    |

  16. The value of sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^2)] is equal to

    Text Solution

    |

  17. If cos^(- 1)x-cos^(- 1)(y/2)=alpha then 4x^2-4xycosalpha+y^2=

    Text Solution

    |

  18. If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi,t h e nx^4+y^2+z^4+4x^2y^2z^2=K(x^...

    Text Solution

    |

  19. If f(x)=sin^(-1)((sqrt(3))/2x-1/2sqrt(1-x^2)),-1/2lt=xlt=1,t h e nf(x)...

    Text Solution

    |

  20. If 2^(2pi//sin^((-1)x))-2(a+2)^(pi//sin^((-1)x))+8a<0 for at least one...

    Text Solution

    |