Home
Class 12
MATHS
If the equation x^3+b x^2+c x+1=0,(b<c),...

If the equation `x^3+b x^2+c x+1=0,(b

A

`-pi`

B

`-(pi)/(2)`

C

`(pi)/(2)`

D

`pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given cubic equation and the expression involving inverse trigonometric functions. ### Step 1: Understand the cubic equation The equation given is: \[ x^3 + bx^2 + cx + 1 = 0 \] We know that this equation has only one real root, denoted as \( \alpha \). The conditions \( b < c \) and the nature of the roots will guide our analysis. ### Step 2: Analyze the function at specific points We can evaluate the function \( f(x) = x^3 + bx^2 + cx + 1 \) at \( x = 0 \) and \( x = -1 \): - At \( x = 0 \): \[ f(0) = 1 \] - At \( x = -1 \): \[ f(-1) = (-1)^3 + b(-1)^2 + c(-1) + 1 = -1 + b - c + 1 = b - c \] Since \( b < c \), we have \( f(-1) < 0 \). ### Step 3: Determine the interval for the root Since \( f(0) = 1 > 0 \) and \( f(-1) < 0 \), by the Intermediate Value Theorem, there exists at least one root \( \alpha \) in the interval \( (-1, 0) \). ### Step 4: Evaluate the expression We need to evaluate the expression: \[ 2\tan^{-1}(\cos \alpha) + \tan^{-1}\left(\frac{2\sin \alpha}{\cos^2 \alpha}\right) \] ### Step 5: Simplify the expression Using the identity for the tangent of a double angle, we can rewrite: \[ \tan^{-1}\left(\frac{2\sin \alpha}{\cos^2 \alpha}\right) = \tan^{-1}\left(2\tan \alpha\right) \] This is because \( \sin \alpha = \tan \alpha \cos \alpha \). Now, we can rewrite the expression: \[ 2\tan^{-1}(\cos \alpha) + \tan^{-1}(2\tan \alpha) \] ### Step 6: Use the addition formula for arctangent Using the formula: \[ \tan^{-1}(x) + \tan^{-1}(y) = \tan^{-1}\left(\frac{x+y}{1-xy}\right) \] for \( x = \cos \alpha \) and \( y = 2\tan \alpha \), we can combine the terms. ### Step 7: Analyze the signs Since \( \alpha \) is in the interval \( (-1, 0) \), we know that \( \sin \alpha < 0 \) and \( \cos \alpha > 0 \). Therefore, \( 2\tan^{-1}(\cos \alpha) \) will yield a negative angle, and the overall expression will also yield a negative angle. ### Final Step: Conclusion After evaluating the expression, we find that: \[ 2\tan^{-1}(\cos \alpha) + \tan^{-1}(2\tan \alpha) = -\pi \] Thus, the final answer is: \[ \text{(a) } -\pi \]

To solve the problem, we need to analyze the given cubic equation and the expression involving inverse trigonometric functions. ### Step 1: Understand the cubic equation The equation given is: \[ x^3 + bx^2 + cx + 1 = 0 \] We know that this equation has only one real root, denoted as \( \alpha \). The conditions \( b < c \) and the nature of the roots will guide our analysis. ### Step 2: Analyze the function at specific points ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked comprehension type|16 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.6|9 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

Let cos^(-1)(x)+cos^(-1)(2x)+cos^(-1)(3x)b epidot If x satisfies the equation a x^3+b x^2+c x-c_1=0, then the value of (b-a-c) is_________

Let cos^(-1)(x)+cos^(-1)(2x)+cos^(-1)(3x)b epidot If x satisfies the equation a x^3+b x^2+c x-c_1=0, then the value of (b-a-c) is_________

If the equation x^(2 )+ 2x + 3 = 0 and ax^(2) +bx+c=0, a, b, c in R , have a common root, then a : b:c is

Let a ,b ,and c be real numbers such that 4a+2b+c=0 and a b > 0. Then the equation a x^2+b x+c = 0

If a,b and c are the roots of the equation x^3+2x^2+1=0 , find |[a,b,c],[b,c,a],[c,a,b]| .

If a,b and c are the roots of the equation x^3+2x^2+1=0 , find |[a,b,c],[b,c,a],[c,a,b]| .

The roots of the equation (b-c) x^2 +(c-a)x+(a-b)=0 are

If a+b+c=0 then check the nature of roots of the equation 4a x^2+3b x+2c=0 where a ,b ,c in Rdot

Consider the equation x ^(3) -ax ^(2) +bx-c=0, where a,b,c are rational number, a ne 1. it is given that x _(1), x _(2) and x _(1)x_(2) are the real roots of the equation. Then x _(1) x _(2) ((a +1)/(b +c))=

If x^2+a x+b=0a n dx^2+b x+c a=0(a!=b) have a common root, then prove that their other roots satisfy the equation x^2+c x+a b=0.

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Single correct
  1. Arithmetic mean of the non-zero solutions of the equation tan^-1 (1/(2...

    Text Solution

    |

  2. If cot^(-1)x+cot^(-1)y+cot^(-1)z=pi/2,x , y , z >0a n dx y<1, then x+y...

    Text Solution

    |

  3. If x^2+y^2+z^2=r^2,t h e ntan^(-1)((x y)/(z r))+tan^(-1)((y z)/(x r))+...

    Text Solution

    |

  4. The value of tan^(-1)((xcostheta)/(1-xsintheta))-cot^(-1)((costheta)/(...

    Text Solution

    |

  5. if cot^(-1)[sqrt(cosalpha)]-tan^(-1)[sqrt(cosalpha)]=x then sinx is eq...

    Text Solution

    |

  6. sum(r =1)^(n) sin^(-1) ((sqrtr - sqrt(r -1))/(sqrtr(r + 1))) is equal...

    Text Solution

    |

  7. sum(m=1)^(n) tan^(-1) ((2m)/(m^(4) + m^(2) + 2)) is equal to

    Text Solution

    |

  8. The value of tan^(-1).(4)/(7) + tan^(-1).(4)/(19) + tan^(-1).(4)/(39) ...

    Text Solution

    |

  9. The sum of series sec^(-1)sqrt(2)+sec^(-1)(sqrt(10))/3+sec^(-1)(sqrt(5...

    Text Solution

    |

  10. If (1)/(2) sin^(-1) [(3 sin 2 theta)/(5 + 4 cos 2 theta)] = tan^(-1) x...

    Text Solution

    |

  11. The value 2tan^(-1)[sqrt((a-b)/(a+b)tantheta/2)] is equal to cos^(-1)(...

    Text Solution

    |

  12. If sin^(-1) ((2a)/(1+a^2))+ sin^(-1) ((2b)/(1+b^2)) = 2 tan^(-1)x then...

    Text Solution

    |

  13. If 3\ sin^(-1)((2x)/(1+x^2))-4\ cos^(-1)((1-x^2)/(1+x^2))+2\ tan^(-1)(...

    Text Solution

    |

  14. If x(1) = 2 tan^(-1) ((1 + x)/(1 -x)), x(2) = sin^(-1) ((1 - x^(2))/(1...

    Text Solution

    |

  15. If the equation x^3+b x^2+c x+1=0,(b<c), has only one real rootalpha ,...

    Text Solution

    |

  16. The value of sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^2)] is equal to

    Text Solution

    |

  17. If cos^(- 1)x-cos^(- 1)(y/2)=alpha then 4x^2-4xycosalpha+y^2=

    Text Solution

    |

  18. If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi,t h e nx^4+y^2+z^4+4x^2y^2z^2=K(x^...

    Text Solution

    |

  19. If f(x)=sin^(-1)((sqrt(3))/2x-1/2sqrt(1-x^2)),-1/2lt=xlt=1,t h e nf(x)...

    Text Solution

    |

  20. If 2^(2pi//sin^((-1)x))-2(a+2)^(pi//sin^((-1)x))+8a<0 for at least one...

    Text Solution

    |