Home
Class 12
MATHS
If cos^(- 1)x-cos^(- 1)(y/2)=alpha then...

If `cos^(- 1)x-cos^(- 1)(y/2)=alpha` then `4x^2-4xycosalpha+y^2=`

A

4

B

`2 sin^(2) alpha`

C

`-4 sin^(2) alpha`

D

`4 sin^(2) alpha`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given: \[ \cos^{-1} x - \cos^{-1} \left( \frac{y}{2} \right) = \alpha \] ### Step 1: Rewrite the equation using cosine Using the property of inverse cosine, we can rewrite the equation as: \[ \cos^{-1} x = \alpha + \cos^{-1} \left( \frac{y}{2} \right) \] ### Step 2: Apply cosine to both sides Now, we apply cosine to both sides: \[ \cos(\cos^{-1} x) = \cos\left(\alpha + \cos^{-1} \left( \frac{y}{2} \right)\right) \] This simplifies to: \[ x = \cos\left(\alpha + \cos^{-1} \left( \frac{y}{2} \right)\right) \] ### Step 3: Use the cosine addition formula Using the cosine addition formula, we have: \[ \cos(A + B) = \cos A \cos B - \sin A \sin B \] Letting \( A = \alpha \) and \( B = \cos^{-1} \left( \frac{y}{2} \right) \), we get: \[ x = \cos \alpha \cdot \cos\left(\cos^{-1} \left( \frac{y}{2} \right)\right) - \sin \alpha \cdot \sin\left(\cos^{-1} \left( \frac{y}{2} \right)\right) \] ### Step 4: Simplify using properties of cosine Since \( \cos\left(\cos^{-1} \left( \frac{y}{2} \right)\right) = \frac{y}{2} \) and \( \sin\left(\cos^{-1} \left( \frac{y}{2} \right)\right) = \sqrt{1 - \left(\frac{y}{2}\right)^2} = \sqrt{\frac{4 - y^2}{4}} = \frac{\sqrt{4 - y^2}}{2} \), we can substitute these into our equation: \[ x = \cos \alpha \cdot \frac{y}{2} - \sin \alpha \cdot \frac{\sqrt{4 - y^2}}{2} \] ### Step 5: Multiply through by 2 Multiplying both sides by 2 gives: \[ 2x = y \cos \alpha - \sin \alpha \sqrt{4 - y^2} \] ### Step 6: Rearranging the equation Rearranging gives: \[ y \cos \alpha - 2x = \sin \alpha \sqrt{4 - y^2} \] ### Step 7: Square both sides Squaring both sides results in: \[ (y \cos \alpha - 2x)^2 = \sin^2 \alpha (4 - y^2) \] ### Step 8: Expand both sides Expanding both sides gives: \[ y^2 \cos^2 \alpha - 4xy \cos \alpha + 4x^2 = 4\sin^2 \alpha - y^2 \sin^2 \alpha \] ### Step 9: Combine like terms Rearranging terms leads to: \[ 4x^2 - 4xy \cos \alpha + y^2 (\cos^2 \alpha + \sin^2 \alpha) = 4\sin^2 \alpha \] Using the identity \( \cos^2 \alpha + \sin^2 \alpha = 1 \): \[ 4x^2 - 4xy \cos \alpha + y^2 = 4\sin^2 \alpha \] ### Final Result Thus, we find that: \[ 4x^2 - 4xy \cos \alpha + y^2 = 4\sin^2 \alpha \]

To solve the problem, we start with the equation given: \[ \cos^{-1} x - \cos^{-1} \left( \frac{y}{2} \right) = \alpha \] ### Step 1: Rewrite the equation using cosine Using the property of inverse cosine, we can rewrite the equation as: ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked comprehension type|16 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.6|9 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

If cos^(-1)x-cos^(-1)y/2=alpha,t h e n4x^2-4x ycosalpha+y^2 is equal to 4 (b) 2sin^2alpha (c) -4sin^2alpha (d) 4sin^2alpha

If cos^(-1) (x/2) + cos^(-1) (y/3) =alpha then prove that 9x^2-12xycosalpha+4y^2=36sin^2alpha .

If cos^(-1)(cos 4)gt3x^(2)-4x then

If cos^(-1)(x)/(2)+cos^(-1)(y)/(3)=theta then the maximum of 9x^(2)-12xy costheta + 4y^(2) is

If cos^(-1)x+cos^(-1)y+cos^(-1)=pi,p rov et h a tx^2+y^2+z^2+2x y z=1.

If cos^(-1)(x/2)+cos^(-1)(y/3) = theta , prove that 9x^2- 12xycostheta+ 4y^2= 36 sin^(2)theta

If cos^(-1)(x/a)+cos^(-1)(y/b)=alpha, prove that (x^2)/(a^2)-2(x y)/(a b)cosalpha+(y^2)/(b^2)=sin^2alpha

If cos^(-1)(x/a)+cos^(-1)(y/b)=alpha, prove that (x^2)/(a^2)-2(x y)/(a b)cosalpha+(y^2)/(b^2)=sin^2alpha

If cos^(-1)(x/a) + cos^(-1) (y/b) = a show that : (x^2)/(a^2) - (2xy)/(ab) cos alpha + (y^2)/(b^2) = sin^(2) alpha .

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , prove that x^2+y^2+z^2+2x y z=1.

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Single correct
  1. Arithmetic mean of the non-zero solutions of the equation tan^-1 (1/(2...

    Text Solution

    |

  2. If cot^(-1)x+cot^(-1)y+cot^(-1)z=pi/2,x , y , z >0a n dx y<1, then x+y...

    Text Solution

    |

  3. If x^2+y^2+z^2=r^2,t h e ntan^(-1)((x y)/(z r))+tan^(-1)((y z)/(x r))+...

    Text Solution

    |

  4. The value of tan^(-1)((xcostheta)/(1-xsintheta))-cot^(-1)((costheta)/(...

    Text Solution

    |

  5. if cot^(-1)[sqrt(cosalpha)]-tan^(-1)[sqrt(cosalpha)]=x then sinx is eq...

    Text Solution

    |

  6. sum(r =1)^(n) sin^(-1) ((sqrtr - sqrt(r -1))/(sqrtr(r + 1))) is equal...

    Text Solution

    |

  7. sum(m=1)^(n) tan^(-1) ((2m)/(m^(4) + m^(2) + 2)) is equal to

    Text Solution

    |

  8. The value of tan^(-1).(4)/(7) + tan^(-1).(4)/(19) + tan^(-1).(4)/(39) ...

    Text Solution

    |

  9. The sum of series sec^(-1)sqrt(2)+sec^(-1)(sqrt(10))/3+sec^(-1)(sqrt(5...

    Text Solution

    |

  10. If (1)/(2) sin^(-1) [(3 sin 2 theta)/(5 + 4 cos 2 theta)] = tan^(-1) x...

    Text Solution

    |

  11. The value 2tan^(-1)[sqrt((a-b)/(a+b)tantheta/2)] is equal to cos^(-1)(...

    Text Solution

    |

  12. If sin^(-1) ((2a)/(1+a^2))+ sin^(-1) ((2b)/(1+b^2)) = 2 tan^(-1)x then...

    Text Solution

    |

  13. If 3\ sin^(-1)((2x)/(1+x^2))-4\ cos^(-1)((1-x^2)/(1+x^2))+2\ tan^(-1)(...

    Text Solution

    |

  14. If x(1) = 2 tan^(-1) ((1 + x)/(1 -x)), x(2) = sin^(-1) ((1 - x^(2))/(1...

    Text Solution

    |

  15. If the equation x^3+b x^2+c x+1=0,(b<c), has only one real rootalpha ,...

    Text Solution

    |

  16. The value of sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^2)] is equal to

    Text Solution

    |

  17. If cos^(- 1)x-cos^(- 1)(y/2)=alpha then 4x^2-4xycosalpha+y^2=

    Text Solution

    |

  18. If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi,t h e nx^4+y^2+z^4+4x^2y^2z^2=K(x^...

    Text Solution

    |

  19. If f(x)=sin^(-1)((sqrt(3))/2x-1/2sqrt(1-x^2)),-1/2lt=xlt=1,t h e nf(x)...

    Text Solution

    |

  20. If 2^(2pi//sin^((-1)x))-2(a+2)^(pi//sin^((-1)x))+8a<0 for at least one...

    Text Solution

    |